Report No. INS-2021-005 - Attachment 1

Riddell Road Orangeville, Ontario Assessment of Intersections

Paradigm Transportation Solutions Limited

January 2021

Project Summary

Project Number 200195

January 2021

Client

Town of Orangeville 87 Broadway Orangeville, ON L9W 1K1

Client Contact

Tony Dulisse, C.E.T. Transportation and Development Technologist

Consultant Project Team Jill Juhlke, C.E.T. Stefan Hajgato, P.Eng. Patrick Neal. BCE

Signing Licencee

Disclaimer

This document has been prepared for the titled project or named part thereof (the "project") and except for approval and commenting municipalities and agencies in their review and approval of this project, should not be relied upon or used for any other project without an independent check being carried out as to its suitability and prior written authorization of Paradigm Transportation Solutions Limited being obtained. Paradigm Transportation Solutions Limited accepts no responsibility or liability for the consequence of this document being used for a purpose other than the project for which it was commissioned. Any person using or relying on the document for such other purpose agrees and will by such use or reliance be taken to confirm their agreement to indemnify Paradigm Transportation Solutions Limited for all loss or damage resulting there from. Paradigm Transportation Solutions Limited accepts no responsibility or liability or liability for this document to any party other than the person by whom it was commissioned and the approval and commenting municipalities and agencies for the project.

To the extent that this report is based on information supplied by other parties, Paradigm Transportation Solutions Limited accepts no liability for any loss or damage suffered by the client, whether through contract or tort, stemming from any conclusions based on data supplied by parties other than Paradigm Transportation Solutions Limited and used by Paradigm Transportation Solutions Limited in preparing this report.

Paradigm Transportation Solutions Limited

5A-150 Pinebush Road Cambridge ON N1R 8J8 p: 519.896.3163 905.381.2229 416.479.9684 www.ptsl.com

Version 1.0.0

Riddell Road, Orangeville, Ontario Assessment of Intersections

Executive Summary

Content

The Town of Orangeville (the Town) retained Paradigm Transportation Solutions Limited (Paradigm) to conduct this Assessment of Intersections for Riddell Road at Alder Street and Centennial Road/Spencer Avenue.

The purpose of this study is to review the existing geometry and operations of the study area intersections to identify and validate operational and safety issues. Upon identification of issues, various mitigation measures will be developed and investigated. Schematic plans illustrating the various options will be prepared along with preliminary cost estimates.

Conclusions

At present, the Riddell Road intersections with Alder Street and Centennial Road/Spencer Avenue are operating at overall acceptable levels of service (LOS C or better). The low to moderate intersection volume to capacity ratios indicate the intersections currently have spare capacity.

Additional capacity will be required at the Riddell Road intersections with Alder Street and Centennial Road/Spencer Avenue upon reaching the 2031 forecast traffic volumes. Several remedial measures have been identified for each intersection including provision of additional capacity through additional lanes and/or lane re-assignment or changes in traffic control. Provision of these measures will result in better levels of service and more efficient travel on Riddell Road.

The remedial measures selected for implementation at each intersection and the timing of these improvements are interconnected where the shorter term improvements are dependent upon the longerterm improvement plan.

Recommendations

It is recommended the Town consider the costs and benefits of each identified improvement and carry out required consultation with County staff. It is also recommended the Town consider conducting a Riddell Road corridor study to identify any longer-term (+2031) roadway capacity needs. These will help the Town develop the preferred improvement plan which will address the identified corridor issues,

provide the required future capacity and assist in preparing future Capital Budget forecasts.

Note that regardless of the timing of improvements, the remedial measure of protected left-turn phasing at Riddell Road and Centennial Road/Spencer Avenue should be implemented in the immediate term to conform to Transportation Association of Canada *Geometric Design Guide for Canadian Roads* (2017) guidance.

Contents

1	Introduction	1
1.1 1.2 1.3	Overview Project Understanding Purpose and Scope	1 1 1
2	Study Area Characteristics	4
2.1 2.2 .1 2.2.2 2.2.3 2.2.4 2.3 2.3.1 2.3.2	Land Use Roadways Roadway Descriptions Sight Distance Left-Turn Lane Sight Lines Pavement Markings Active Transportation Walking Cycling	4 4 8 9 9 9 9
3	Safety Review	11
3.1 3.2	Collision Analysis Speed Limit Review	.11 .12
4	Traffic Operations Review	14
4.1 4.2 4.3 4.4 4.5	2020 Traffic Volumes Operational Analysis Methodology 2020 Traffic Operations 2031 Traffic Volumes 2031 Traffic Operations	.14 .16 .17 .19 .19
5	Riddell Road and Alder Street Remedial Measure	S
5.1	Future Recreation Centre Access	.23 .25
6	Riddell Road and Centennial Road/ Spencer Avenue Remedial Measures	26
6.1 6.1.1 6.1.2 6.1.3 6.2	Immediate Implementation (within One Year) Left-Turn Signal Timing Phase Justification Protected Left-Turn Signal Phasing Southbound Right-Turn Lane Intermediate Implementation (within Two to Five Years)	.26 .26 .27 .31 .33
6.2.1 6.2.2	Left-Turn Lane Alignment	.33 .33

7	Long-Term (>5 Years) Remedial Measures – B	Both
	Intersections	36
7.1	Scenario 1: One-Lane Entry on All Approaches	36
7.2	Scenario 2: Partial Two-Lane Entry	37
7.3	Scenario 3: Two-Lane Entry on All Approaches	41
7.4	Roundabout Design	45
7.5	Roadway Widening	
7.6	Roundabout Summary	45
8	Intersection Improvements Summary	47
9	Supplemental Riddell Road Corridor	
	Recommendations	49
9.1	Corridor Study	49
9.2	Signal Timing Review	49
9.3	Collision Database	49
10	Conclusions and Recommendations	50
40.4	Conclusions	F 0
10.1	Conclusions	
10.2	Recommendations	

Appendices

Appendix A	Collision Data
Appendix B	TAC Speed Limit Assessment Forms
Appendix C	2020 Traffic Operations Reports
Appendix D	2031 Traffic Operations Reports
Appendix E	Riddell Road and Alder Street Remedial Measures
	Traffic Operations Reports
Appendix F	Riddell Road and Centennial Road/Spencer
	Avenue Protected Left-Turn Phasing Operations
	Reports
Appendix G	Riddell Road and Centennial Road/Spencer
	Avenue Lane Re-assignment Operations Reports
Appendix H	2031 Arcady Reports

Figures

Figure 1.1:	Study Area	2
Figure 2.1:	Existing Lane Configurations and Traffic Controls	7
Figure 4.1:	2020 Traffic Volumes	15
Figure 4.2:	2031 Traffic Volumes	20
Figure 6.1:	Example Left-Turn Lane Line Extension	29
Figure 6.2:	Riddell Road Southbound Right-Turn Lane	
	Conceptual Mitigation Measures Plan	32
Figure 7.1a:	Alder Street TORUS Roundabout Design 47.5 Metre	
	Inscribed Circle Diameter	39
Figure 7.1b:	Centennial Road/Spencer Avenue TORUS	
	Roundabout Design 47.5 Metre Inscribed Circle	
	Diameter	40
Figure 7.2a:	Alder Street TORUS Roundabout Design 55 Metre	
	Inscribed Circle Diameter	43
Figure 7.2b:	Centennial Road/Spencer Avenue TORUS	
	Roundabout Design 55 Metre Inscribed Circle	
	Diameter	44

Tables

Table 3.1:	Collision Summary	12
Table 3.2:	Speed Limit Comparison	13
Table 4.1:	2020 Peak Hour Traffic Operations	18
Table 4.2:	2031 Total Traffic Operations	22
Table 5.1:	2031 Traffic Operations – alder Street with	
	Improvements	24
Table 6.1:	Left-Turn Phase Justification	27
Table 6.1:	2031 Traffic Operations – Spencer Ave/Centennia	al Rd
	with Protected Left-Turn Phasing	30
Table 6.2:	2031 Traffic Operations – Spencer Ave/Centennia	al Rd
	with Lane Re-Assignment	35
Table 7.1:	Scenario 1 Arcady Analyses	37
Table 7.2:	Scenario 2 Arcady Analyses	38
Table 7.3:	Scenario 3 Arcady Analyses	42
Table 8.1:	Improvements Costs	48

1 Introduction

1.1 Overview

The Town of Orangeville (the Town) retained Paradigm Transportation Solutions Limited (Paradigm) to undertake the Assessment of Intersections on Riddell Road at Alder Street and Centennial Road/ Spencer Avenue.

Figure 1.1 illustrates the study area.

1.2 Project Understanding

Riddell Road is a major arterial roadway providing access to local residential subdivisions, busy commercial areas and community centres and schools. It is a bypass route for vehicle traffic around Orangeville. Since opening in 2005, it has helped reduce truck and overall traffic volumes travelling through downtown Orangeville, enabling Broadway to function as a pedestrian-oriented main street. This change has contributed, in part, to Broadway being recognized as one of the Great Places in Canada.

Riddell Road is approximately 7 kilometres long with a 3-kilometre section in the Town's corporate limits Dufferin County Road 109 (Broadway) to Townline (County Road 23)) and the balance under County jurisdiction. The road has a 70 km/h posted speed limit and a three-lane rural cross-section with auxiliary lanes at most intersections and private entrances. Within Orangeville, Riddell Road intersects four public roads (excluding Broadway and Townline). Adjacent land uses include commercial, industrial and residential uses.

The Town has experienced considerable growth over the past 10 years. In response, Paradigm has been retained to conduct a traffic operations assessment to identify potential safety and operational issues, recommend remedial measures and assess their effectiveness.

1.3 Purpose and Scope

The purpose of this study, as confirmed during pre-consultation with Town Staff, is to:

- Review the existing geometry and operations of the study area intersections;
- Review the five-year collision data;
- Review the current posted speed limits;

Riddell Road Assessment of Intersections 200195

Figure 1.1

- Analyse the future intersection operations both with and without remedial measures;
- Provide recommendations on immediate, intermediate and longterm improvement options for the study area intersections;
- Provide guidance on future recommended studies and practices; and
- Prepare preliminary cost estimates for the recommended measures.

This study assesses the 2031 horizon year, consistent with the *Dufferin Road 109 Traffic Capacity Analysis*¹.

Note: this report has been used as background information only. Further use and interpretation should be undertaken through discussions and the County of Dufferin's approval.

¹ Prepared by Triton Engineering Services Limited for Dufferin County. *Dufferin Road 109 Traffic Capacity Analysis*. February 2020.

2 Study Area Characteristics

This section documents current traffic conditions, operational deficiencies, and constraints, perceived or otherwise, that may be experienced by the public travelling at the intersections within the study area. The operational deficiencies and constraints identified at this stage will be fundamental to the process of defining the required remedial measures.

2.1 Land Use

The existing land uses abutting the Riddell Road corridor are primarily commercial, institutional and recreational. Although no house or school fronts directly onto Riddell Road, both Alder Street and Spencer Avenue provide access to neighbouring residential areas.

2.2 Roadways and Intersection Geometries

2.2.1 Roadway Descriptions

Details of the study area roads are as follows:

Riddell Road

- Direction: north-south
- Right-of-Way Width: varies between 35 to 45 meters
- Official Plan² Designation: arterial
- Cross-Section:
 - South of Centennial Road/Spencer Avenue: Two-lane urban with auxiliary turning lanes at Centennial Road/Spencer Avenue intersection. The cross-section transitions to urban on the west side and rural on the east side approximately 130 metres south of the intersection
 - Between Centennial Road/Spencer Avenue and Alder Street: Two lanes with urban cross-section on west side and rural cross-section on east side with auxiliary turning lanes at Alder Street intersection
 - North of Alder Street: Two-lane rural cross-section
- Lane Widths:
 - Through lanes: 3.75 metres

² *The Official Plan of the Orangeville Planning Area*. December 2018. Schedule E: Roads Plan.

- Auxiliary lanes: 3.0 to 3.5 metres
- Stopping/Parking Restrictions: Stopping is prohibited on both sides of the roadway throughout the study area
- Posted Speed Limit: 70 km/h
- Alder Street
 - Direction: east-west
 - Official Plan Designation: minor collector
 - Cross-Section:
 - Two-lane urban west of Riddell Road
 - Three-lane urban (one through lane in each direction and a central two-way left-turn lane) east of Riddell Road
 - Auxiliary left-turn lanes are provided on both approaches at Riddell Road
 - Lane Widths:
 - Through lanes: 3.75 metres
 - Auxiliary lanes: 3.0 metres
 - Stopping/Parking Restrictions: Not posted/signed; therefore, subject to Town By-law 78-2005;
 - Posted Speed Limit: 40 km/h with a posted School Zone and Community Safety Zone east of Riddell Road.
- Centennial Road
 - Direction: east-west
 - Official Plan Designation: minor collector
 - Cross-Section: Three-lane urban (one through lane in each direction and a central two-way left-turn lane) with a westbound auxiliary left-turn lane at Riddell Road
 - Lane Widths:
 - Through lanes: 3.75 metres
 - Auxiliary lanes: 3.0 metres
 - Stopping/Parking Restrictions: Stopping is prohibited on both sides of the roadway throughout the study area
 - Posted Speed Limit: Not posted, designated as 50 km/h through Town By-law 78-2005.

- Spencer Avenue
 - Direction: east-west (connection to Riddell Road completed in 2017)
 - Official Plan Designation: minor collector
 - Cross-Section: Two-lane urban with eastbound auxiliary leftturn lane at Riddell Road
 - Lane Widths:
 - Through lanes: 3.75 metres
 - Auxiliary lanes: 3.0 metres
 - Stopping/Parking Restrictions: Stopping is prohibited on both sides of the roadway throughout the study area
 - Posted Speed Limit: 40 km/h, with a posted School Zone and Community Safety Zone west of the study area.

The roadway configurations and existing conditions were confirmed through a site visit conducted by Paradigm staff in June 2020.

Figure 2.1 illustrates the traffic control and lane configuration at the study area intersections. Note that both study area intersections operate under traffic signal control.

Existing Lane Configurations and Traffic Controls

Riddell Road Assessment of Intersections 200195

Figure 2.1

2.2.2 Sight Distance

Sight distances at both Riddell Road intersections were measured during the site visit and further validated via satellite imagery. The measured sight distances were assessed and compared to sight distance guidance and methodologies provided in the Transportation Association of Canada's (TAC) publication *Geometric Design Guidelines for Canadian Roads* (GDGCR)³. The assessment determined:

- All study area sight distances meet the minimum TAC departure sight distance criteria (i.e. vehicles entering Riddell Road); and
- It was also confirmed that the roadway was designed to meet the TAC stopping sight distance criteria, thereby providing motorists with ample time and space to bring their vehicles safely to a stop to avoid conflicts.

Overall, the intersection departure and stopping sight distances fall within the recommended guideline criteria which is based on standard engineering best practices.

2.2.3 Left-Turn Lane Sight Lines

Centennial Road/Spencer Avenue

The northbound and southbound left-turn lanes on Riddell Road at Centennial Road/Spencer Avenue are offset. As such, periodically the drivers waiting to make an opposing left turn do not have a clear line of site to oncoming through traffic on Riddell Road. For example, when a Riddell Road southbound transport truck is waiting to make a left turn (to go eastbound on Centennial Road), a northbound vehicle cannot see oncoming southbound through traffic (on Riddell Road) "around" the truck. This can be perceived as a safety issue by some drivers.

Chapter 9.17.4.5 Left-Turn Lanes on Both Approaches of the TAC GDGCR (2017 edition) indicates that two types of left-turn lane designs are applicable: opposing left-turn lanes and adjacent (offset) left-turn lanes. The GDGCR states the following regarding adjacent left-turn lanes: "The provision of adjacent left-turn lanes is not generally recommended due to the potential for collisions caused by visibility problems for left-turning vehicles. Visibility problems result from the presence of vehicles in adjacent left-turn lanes and, for this reason, such movements should generally only be used at signalized intersections with protected left turn phases".

³ TAC. Geometric Design Guide for Canadian Roads. June 2017.

In general, while offset left-turn lanes are not an optimal design, they are acceptable provided appropriate signal phasing is provided. **Chapter 6** provides mitigation measures that could be implemented at this intersection to minimize the perceived issues and improve intersection operations and alignment.

Alder Street

Since the northbound and southbound left-turn lanes are aligned at this intersection, a sight line assessment was not required.

2.2.4 Pavement Markings

Pavement markings along the Riddell Road corridor include a solid yellow centreline, dashed white lines delineating travel lanes, turn lane markings (arrows), stop bars and delineated pedestrian crossings. Both signalized study area intersections (Alder Street and Centennial Road/Spencer Avenue) also provide delineated solid white parallel lines as pedestrian crosswalks and white stop bars across all approaches.

Pavement markings within the study area limits conform to standard guidelines and are in compliance with Ontario Traffic Manual Book 11 Pavement, Hazard and Delineation Markings of the Ontario Traffic Manual⁴.

The pavement markings within the study area show signs of wear and loss of marking based upon the field inspection. The Town has a yearly pavement marking program where reapplication/ refreshing will occur.

2.3 Active Transportation

2.3.1 Walking

Sidewalks are provided along both sides of all study area roadways except for the section of Riddell Road south of Centennial Road/Spencer Avenue where no sidewalks are provided.

2.3.2 Cycling

Alder Street has painted sharrows in both directions on both sides of the roadway to indicate that cyclists and autos share the roadway. Signed cycling facilities (lanes, paths, etc.) are not provided along any other study area roadway.

⁴ Ontario Traffic Manual, Book 11, Pavement, Hazard and Delineation Markings, Queen's Printer for Ontario, March 2000

It is noted that Riddell Road has a four-metre (approximate) hard surface shoulder reserved for future turn and/or acceleration/ deceleration lanes. To avoid confusion, it is recommended the Town stripe/hatch this area so it is clear to cyclists that these areas are not bike lanes.

3 Safety Review

A safety performance review for the Riddell Road corridor between Alder Street and Centennial Road/Spencer Avenue has been undertaken as part of this Operational Review. This review included collision analysis and a speed limit review. The results are outlined the following sections.

3.1 Collision Analysis

A high-level collision analysis was undertaken for the study area intersections of Riddell Road at Alder Street and Centennial Road/Spencer Avenue. Collision data were provided by the Town for the study area intersections for the seven-year period from January 2014 to May 2020. However, the data was limited in scope and did not contain detailed information such as collision type, location, weather conditions and severity. Therefore, only a high-level analysis could be undertaken.

Table 3.1 summarizes the overall collision data at both study areaintersections. The data indicates:

- ▶ Riddell Road and Alder Street:
 - Data was provided for January 2014 through May 2020;
 - A total of 44 collisions occurred between February 2014 and May 2020;
 - The yearly collision rate is 6.14;
 - The highest number of yearly collisions, 11, occurred in 2014, reducing to nine in 2015;
 - Collisions were generally trending downward to 2016 where they have remained consistent at around five or six collisions; and
 - While not consistent year over year, collisions were recorded in February and March for most years which <u>could</u> be weather related.
- ▶ Riddell Road and Centennial Road/Spencer Avenue:
 - Data was provided for January 2017 through June 2019
 - A total of seven collisions occurred between January 2017 and June 2019;
 - The yearly collision rate is 2.33;
 - The highest number of collisions, four, occurred in 2019; and

• Collisions are generally trending upward.

Note that data is not provided for this intersection prior to October 2017 when the westerly (Spencer Avenue) leg was opened. It is recognized that the increase in collisions could be attributed to the opening of the westerly leg and the resulting change in traffic patterns.

In summary, other than time of year, there are no discernible collision patterns identified in the data.

	Inters	ection
Year	Alder Street	Centennial Road/ Spencer Avenue
2014	11	-
2015	9	-
2016	5	-
2017	4	1
2018	6	2
2019	5	4
2020	3*	-
Total	43	7
Avg. per Year	6.14	2.33

TABLE 3.1: COLLISION SUMMARY

*Total as of 22 May 2020

Appendix A contains the detailed collision data set.

3.2 Speed Limit Review

The posted speed limit on Riddell Road in the study area is 70 km/h. Alder Street and Spencer Avenue each have posted speed limits of 40 km/h. Centennial Road does not have a posted speed limit; therefore, it is 50 km/h in accordance with the Town's Traffic Bylaw.

According to the TAC *Speed Management Guide*⁵, the desirable operating speeds for the study area roadways are:

Riddell Road south of Centennial Road/Spencer Avenue:

⁵ Transportation Association of Canada. *Speed Management Guide, The Canadian Road Safety Engineering Handbook (CRSH)*. February 2016. Table 10.

- 70 to 80 km/h for a two-lane, undivided urban arterial roadway; or
- 80 to 90 km/h for a two-lane undivided rural arterial roadway
- Centennial Road, Spencer Avenue and Alder Street:
 - 60 km/h for a two-lane, undivided urban minor collector roadway

The posted speed limit of 70 km/h on Riddell Road is at or below the desirable TAC operating speeds, depending on the type of cross-section. The posted speed limits on Alder Street, Centennial Road, and Spencer Avenue are under the desirable operating speeds per the TAC guidelines.

The posted speed limits were reviewed using the methodology presented in the TAC *Canadian Guidelines for Establishing Posted Speed Limits*.⁶ The analysis considers the roadway geometry, curvature, lane widths, pedestrian and cyclist exposure, pavement surface conditions, number of intersections, and number of intersections with private access driveways. **Table 3.2** provides a summary comparing the posted speed limits and TAC recommended speed limits for each study area roadway.

The findings indicate the current maximum posted speed limits are at or below the recommended speed limits.

Roadway	Posted Maximum Speed Limit	Recommended Speed Limit (TAC Guidelines)
Riddell Road	70 km/h	80 km/h
Alder Street west of Riddell Road	40 km/h	40 km/h
Alder Street east of Riddell Road	40 km/h	50 km
Centennial Road	Unposted (assumed 50 km/h)	60 km/h
Spencer Avenue	40 km/h	50 km/h

TABLE 3.2: SPEED LIMIT COMPARISON

Appendix B contains the TAC Speed Limit Assessment Forms for the study area roadways.

⁶ Transportation Association of Canada. *Canadian Guidelines for Establishing Posted Speed Limits*. December 2009.

4 Traffic Operations Review

4.1 2020 Traffic Volumes

To assess intersection operations, turning movement counts are used to quantify the movement of vehicles through intersections. Existing traffic data at an intersection or on a road section forms the foundation for traffic analyses undertaken in a Transportation Impact Study (TIS).

This study was initiated and authored amidst the COVID-19 global pandemic. In response to the pandemic, the Province of Ontario implemented restrictions for day-to-day activities including the closure of non-essential businesses and other measures to curb the spread of the virus (i.e. lockdown, stay at home precautions). As a result, typical traffic volumes and travel patterns were impacted and collection of current traffic data was not possible.

However, the *Dufferin Road 109 Traffic Capacity Analysis* report contained traffic count data for the study area intersections. The data was collected in December 2018 and January 2019. To reflect 2020 conditions, a growth rate of 2% per annum compounded for two years (total growth of 4%) was applied to the data. Note that the 2% growth rate is consistent with the growth used in the County's report.

Figure 4.1 illustrates the 2020 traffic volumes.

Figure 4.1

2020 Traffic Volumes

		AIGEL ST	← 278	274 →				Centennial	Rd	← 394	332 →			
	2	8	29	€	181			œ	83	53	♠_	82	:L	РА
	Ŋ	0)	÷	-	883			Ŋ	÷	1	←	99	9	IləbbiЯ
€22 →	₄	¥	4	₣	9Z	844 →	€95 →	₽	¥	4	Ł	09	il	834 →
+ 434	g	3	_	•	↑ ┍	← 259	₹72	Z	8	L →	Ł	1	┢	697 🔶
РЯ	69	36	→	9	∞ 			99	5(→	ထု	17	ọ	
IləbbiЯ	Z	5.	ᡝ	<u> </u>	ניז נע			6	l	ᡝ	7	<u>_</u>	ব	
			← 200	105 -	Alder St					← 352	205 -	Spencer	Ave	

Riddell Road Assessment of Intersections 200195

PM Peak Hour

AM Peak Hour

4.2 Operational Analysis Methodology

Intersection level of service (LOS) is a recognized method of quantifying the average delay experienced by drivers at intersections. It is based on the delay experienced by individual vehicles executing the various movements. The delay is related to the number of vehicles intending to make a particular movement, compared to the estimated capacity for that movement. The capacity is based on a number of criteria related to the opposing traffic flows and intersection geometry.

The highest possible rating is LOS A, under which the average total delay is equal to or less than 10.0 seconds per vehicle. When the average delay exceeds 80 seconds for signalized intersections or 50 seconds for unsignalized intersections, or when the volume-to-capacity (v/c) ratio is greater than 1.0, the movement is classified as LOS F, and remedial measures are usually implemented if they are feasible. LOS E is usually used as a guideline for the determination of roadway improvement needs on through lanes, while LOS F may be acceptable for left-turn movements at peak times depending on delays.

The operations of intersections in the study area were evaluated with the existing turning movement volumes using Synchro 9 with HCM 2000 procedures. The intersection analysis considered three separate measures of performance:

- The LOS for each turning movement based on the average delay per vehicle;
- ▶ The v/c ratio for each turning movement; and
- ▶ The estimated 95th percentile queue length.

As per the Town of Orangeville Traffic Impact Study Guidelines, movements are considered critical when:

- V/C ratios for overall intersection operations or shared through/turning movements increase to 0.85 or above; or
- ▶ V/C ratios for exclusive turning movements increase to 0.90.

The key parameters used in the analysis include:

- Existing lane configurations;
- Existing heavy vehicle percentages;

- Existing intersection peak hour factors (PHF), which facilitates an assessment of the busiest 15-minute period within the peak hour; and
- Synchro default values for all other inputs.

4.3 2020 Traffic Operations

Table 4.1 summarizes the existing intersection operations. The entries in the table indicate the AM and PM peak hour LOS, v/c ratios, and 95th percentile queues. The results indicate the study area intersections are operating as follows:

Riddell Road and Alder Street:

- AM Peak Hour
 - Overall intersection: LOS C with a v/c ratio of 0.60; and
 - The southbound through movement is operating at LOS D with a v/c ratio of 0.91.
- PM Peak Hour
 - Overall intersection: LOS C with a v/c ratio of 0.58; and
 - The northbound through movement is operating at LOS D with a v/c ratio of 0.92.

Riddell Road and Centennial Road/Spencer Avenue:

- AM Peak Hour
 - Overall intersection: LOS B with a v/c ratio of 0.50; and
 - No critical movements are noted.
- PM Peak Hour
 - Overall intersection: LOS B with a v/c ratio of 0.64; and
 - No critical movements are noted.

Overall, the results indicate the study area intersections are operating at acceptable levels of service. The low to moderate intersection v/c ratios indicate the intersections have spare capacity.

Appendix C contains the detailed Synchro 9 reports.

od									Di	irectio	n / Mo	overne	nt / Ap	oproad	h					
Peri					Eastb	ound			Westk	oound			North	bound			South	bound	l	
Analysis I	Intersection	Туре	MOE	-eft	Through	Right	Approach	Left	Through	Right	Approach	Left	Through	Right	Approach	Left	Through	Right	Approach	OVERALL
			LOS	В	В	٧	В	В	В	٧	В	В	В	В	В	В	D	В	С	С
			Delay	12	14	>	14	15	13	>	14	15	18	14	17	16	37	13	33	23
	Riddell Road &	TCS	V/C	0.03	0.30	>		0.33	0.12	>		0.21	0.57	0.10		0.36	0.91	0.01		0.60
<u> </u>	Alder Street	100	95th	5	32	>		25	13	>		8	53	8		22	113	0		
우 이			Storage	25	-	>		25	-	>		95	-	35		110	-	40		
ak I			Avail.	21	-	>		0	-	>		87	-	27		89	-	40		
Pe	Riddell Road & Spencer Avenue/ Centennial Road		LOS	С	С	>	С	С	С	>	С	А	А	А	Α	А	В	А	В	В
AM			Delay	20	23	>	22	23	21	>	22	7	9	7	8	9	11	6	10	14
		TCS	V/C	0.20	0.50	>		0.50	0.25	>		0.11	0.31	0.06		0.27	0.49	0.01		0.50
			95th	15	42	>		27	22	>		8	33	5		23	61	0		
			Storage	50	-	>		40	-	>		105	-	60		165	-	160		
			Avail.	35	-	>		13	-	>		97	-	55		142	-	160		
			LOS	В	В	>	В	В	В	>	В	В	D	В	С	В	В	В	В	С
			Delay	12	13	>	13	15	14	>	14	15	37	14	30	17	18	13	18	23
	Riddell Road &	TCS	V/C	0.03	0.10	>		0.26	0.18	>		0.27	0.92	0.18		0.32	0.59	0.02		0.58
L,	Alder Street		95th	5	14	>		25	22	>		18	146	1/		12	70	2		
Р́Р			Storage	25	-	>		25	-	>		95 77	-	35		110	-	40		
eak			Avall.	20	-	>	-	0	-	>	-	11	-	>		98	-	38	•	
ΝΡ			LUS	20		~	24	24	し 22	~	С 22	A	В 15	A 7	B 42	A	A	A 7	A	В 45
P	Riddell Road &			20	∠ I 0.22	(21	24	23	(23	9	0.69	/ 0.10	15	9	9	, 0.02	9	10
	Spencer Avenue/	TCS	0.5th	12	0.32 20	(0.55	0.55	(0.25	0.00	16		16	0.5	0.02		0.04
	Centennial Road		Storage	50	29	(30 40	40	(23 105	99	60		165	30	160		
			Avail	37	-	(40 5	-	(82	-	44		140	-	150		
			Avall.	31	-	-		5	-	-		02	-	44		149	-	109		

TABLE 4.1: 2020 PEAK HOUR TRAFFIC OPERATIONS

MOE - Measure of Effectiveness

LOS - Level of Service

V/C - Volume to Capacity Ratio

95th - 95th Percentile Queue Length Storage - Existing Storage (m) Avail. - Available Storage (m) TCS - Traffic Control Signal

> - Shared Right-Turn Lane

< - Shared Left-Turn Lane

4.4 2031 Traffic Volumes

Consistent with the *Dufferin Road 109 Traffic Capacity Analysis*, a 2.0% growth rate compounded for 11 years (total growth of 29.4%) was applied to the 2020 traffic volumes to derive the 2031 traffic volumes. It should be noted that as per the Dufferin Road 109 report, the 2.0% growth rate is considered to be conservative.

Figure 4.2 illustrates the 2031 traffic volumes.

4.5 2031 Traffic Operations

The operations of the study area intersections were evaluated under the 2031 traffic volumes. The analyses were completed using Synchro 9 with HCM 2000 procedures with optimized signal timing and phasing. The key parameters such as existing intersection configurations, heavy vehicle percentages, peak hour factors, and pedestrian volumes were retained from the existing analysis.

Table 4.2 summarizes the AM and PM peak hour background traffic intersection operations including the AM and PM peak hour LOS, v/c ratios and 95th percentile queue lengths. The results indicate the study area intersections are forecast to operate as follows:

Riddell Road and Alder Street:

- AM Peak Hour
 - Overall intersection: LOS C with a v/c ratio of 0.78;
 - The southbound through movement is forecast to operate at LOS C with a v/c ratio of 0.88; and
 - The westbound left-turn movement is forecast to exceed the 25 metres of existing storage (enough for about three vehicles) by 32 metres, or about four vehicles.
- PM Peak Hour
 - Overall intersection: LOS B with a v/c ratio of 0.71;
 - The northbound through movement is forecast to operate at LOS C with a v/c ratio of 0.89; and
 - The westbound left-turn movement is forecast to exceed the 25 metres of existing storage (enough for about three vehicles) by 23 metres, or about three vehicles.

Overall, the intersection is forecast to continue operating at acceptable levels of service and with spare capacity. The northbound and

Figure 4.2

2031 Traffic Volumes

	Alder St	← 345	341 -				Centennial	Rd	← 490	412 →				
	63 122	160	▲	525 731			72	228	190	▲	69 ₽	31 59	iddell b۲	F
814 🕂	↓ ↓	Ļ	₣	63	40ל6 →	823 →	₽	↓	Ļ	₣	78	31	← 2801	
∠ES →	44	▲	4	↑ ♪	e28 →	← ⊄93	80)	_	₹	↑	₽	129 —	•
IIəbbiЯ bЯ	426 34	→ 구	20	72 39			31 4	33 5	→ →	60	145	50		
		← 249	131 -	Alder St					+ 439	255 -	Spencer	Ave		

Riddell Road Assessment of Intersections 200195

AM Peak Hour

PM Peak Hour

southbound through movements will continue to experience minor congestion. The forecast v/c ratios are not identified as critical under the Town's TIS guidelines. However, typically, when v/c ratios exceed 0.85 for through movements on arterial roads, remedial measures are considered.

Riddell Road and Centennial Road/Spencer Avenue:

- AM Peak Hour
 - Overall intersection: LOS B with a v/c ratio of 0.50; and
 - The westbound left-turn movement (from Riddell to Spencer) is forecast to exceed available storage by four metres, or less than one vehicle.
- PM Peak Hour
 - Overall intersection: LOS B with a v/c ratio of 0.64;
 - The westbound left-turn movement (from Riddell to Spencer) is forecast to exceed the 40 metres of existing storage (enough for about five vehicles) by 25 metres, or about three vehicles.

Overall, the intersection is forecast to continue operating at acceptable levels of service and with spare capacity. The identified queue storage issues are based on the 95th percentile back of queue estimates which are calculated based on the worst 5% of the peak hour. Conversely, the remaining 95% of the peak hour will not experience queues of this length. Therefore, the need for queue extension should be revisited as the traffic volumes increase to those outlined herein.

Appendix D contains the detailed Synchro 9 reports.

od									Di	rectio	n / Mo	overne	nt / Ap	oproad	ch					
Peri					Eastb	ound			Westk	ound			North	bound			South	bound		
Analysis	Intersection	Control Type	MOE	Left	Through	Right	Approach	Left	Through	Right	Approach	Left	Through	Right	Approach	Left	Through	Right	Approach	OVERALL
			LOS	В	С	۷	С	С	В	>	С	В	В	В	В	В	С	А	С	С
			Delay	17	23	>	23	30	19	>	25	11	14	10	13	12	27	10	24	21
	Riddell Road &	TCS	V/C	0.05	0.50	>		0.62	0.22	>		0.22	0.55	0.13		0.38	0.88	0.01		0.78
⊾	Alder Street	100	95th	8	63	>		57	28	>		7	54	6		22	113	1		
Hot			Storage	25	-	>		25	-	>		95	-	35		110	-	40		
ak			Avail.	17	-	>		-32	-	>		88	-	29		88	-	39		
l Pe	Riddell Road & Spencer Avenue/ Centennial Road		LOS	С	С	>	С	D	С	>	С	А	В	А	Α	В	В	А	В	В
AN			Delay	21	27	>	26	47	21	>	33	9	11	8	10	11	14	7	13	18
		TCS	V/C	0.23	0.67	>		0.81	0.31	>		0.17	0.4	0.07		0.37	0.63	0.01		0.68
			95th	18	53	>		44	28	>		13	54	7		37	105	0		
			Storage	50	-	>		40	-	>		105	-	60		165	-	160		
			Avall.	32	-	>	P	-4	-	>	6	92	-	53	0	128	- D	160	P	P
			LU3 Delav	D 18	- Б 10	>	Б 19	24	21	>	22	- D 11	27	Б 10	22	D 13	Б 14	A Q	р 13	р 20
	Piddoll Pood 8		V/C	0.05	0.18	>	15	0.43	0.32	>		0.28	0.89	0.20	~~	0.35	0.57	0.02	15	0 71
	Alder Street	TCS	95th	9	27	>		48	46	>		17	152	16		12	73	3		•
our			Storage	25	_	>		25	-	>		95	_	35		110	-	40		
Ϋ́Η			Avail.	16	-	>		-23	-	>		78	-	>		98	-	37		
Peal			LOS	С	С	>	С	D	С	>	D	А	В	А	В	В	А	А	Α	С
W			Delay	29	28	>	28	49	35	>	40	10	19	8	16	12	9	7	10	21
<u> </u>	Riddell Road &	тоо	V/C	0.37	0.43	>		0.81	0.70	>		0.31	0.78	0.13		0.37	0.35	0.02		0.79
	Spencer Avenue/	165	95th	21	46	>		65	75	>		31	164	24		24	49	2		
	Contenniar Noau		Storage	50	-	>		40	-	>		105	-	60		165	-	160		
			Avail.	29	-	>		-25	-	>		74	-	36		141	-	158		

TABLE 4.2: 2031 TOTAL TRAFFIC OPERATIONS

MOE - Measure of Effectiveness

LOS - Level of Service

V/C - Volume to Capacity Ratio

95th - 95th Percentile Queue Length Storage - Existing Storage (m) Avail. - Available Storage (m) TCS - Traffic Control Signal

> - Shared Right-Turn Lane

< - Shared Left-Turn Lane

5 Riddell Road and Alder Street Remedial Measures

As previously outlined, the northbound and southbound through movements at this intersection are currently experiencing congestion as indicated by the v/c ratios >0.90. These conditions are forecast to improve slightly upon reaching the 2031 traffic volumes with the optimized signal timings; however, these movements will still experience congestion.

To improve operations, Synchro analyses were undertaken to determine the level of remedial measures required to provide acceptable v/c ratios on the critical movements. The analyses were undertaken using the same methodology as for the 2031, optimized timing and phasing and the following on Riddell Road:

- An additional northbound through lane (to one left-turn lane, two through lanes and one right-turn lane); and
- Re-assignment of the southbound right-turn lane to a shared through/right-turn lane.

Table 5.1 summarizes the AM and PM peak hour background traffic Riddell Road and Alder Street intersection operations including the AM and PM peak hour LOS, v/c ratios and 95th percentile queue lengths. The results indicate the intersections is forecast to operate as follows:

- AM Peak Hour
 - Overall intersection: LOS B with a v/c ratio of 0.53;
 - The westbound left-turn movement is forecast to exceed available storage by six metres, or less than one vehicle.
- PM Peak Hour
 - Overall intersection: LOS B with a v/c ratio of 0.49;
 - The westbound left-turn movement is forecast to exceed available storage by six metres, or less than one vehicle.

As expected, provision of the additional capacity results in overall improved intersection operations and on the critical northbound and southbound through movements. As well, there is noted improvement in the intersection v/c ratios to 0.53 during the AM peak hour and 0.49 during the PM peak hour indicating the intersection will utilize about 50% of its capacity.

Appendix E contains the detailed Synchro reports.

TABLE 5.1: 2031 TRAFFIC OPERATIONS - ALDER STREET WITH IMPROVEMENTS

od				Direction / Movement / Approach																
Peri		Control Type			Eastb	ound			West	oound			North	bound			South	bound		
Analysis F	Intersection		MOE	Left	Through	Right	Approach	Left	Through	Right	Approach	Left	Through	Right	Approach	Left	Through	Right	Approach	OVERALL
r	Riddell Road & Alder Street		LOS	А	В	٧	В	В	В	^	в	В	В	В	В	В	С	А	С	В
hou		TCS	Delay	9	12	>	12	13	10	>	12	16	17	15	16	18	21	0	21	17
ak F			V/C	0.04	0.35	>		0.39	0.16	>		0.24	0.44	0.13		0.50	0.72	0.00		0.53
Pe			95th	5	38	>		31	17	>		8	28	9		26	51	0		
AM			Storage	25	-	>		25	-	>		95	-	35		110	-	40		
			Avail.	20	-	>		-6	-	>		87	-	26		84	-	40		
<u> </u>			LOS	А	В	>	В	В	В	>	В	В	В	В	В	В	В	А	В	В
hoh			Delay	10	10	>	10	13	11	>	12	15	18	13	16	14	15	0	15	15
ak F	Riddell Road &	TCS	V/C	0.04	0.14	>		0.32	0.25	>		0.35	0.68	0.15		0.28	0.46	0.00		0.49
Pe	Alder Street	100	95th	6	18	>		31	29	>		19	54	11		11	34	0		
Мс			Storage	25	-	>		25	-	>		95	-	35		110	-	40		
			Avail.	19	-	>		-6	-	>		77	-	>		99	-	40		

MOE - Measure of Effectiveness

LOS - Level of Service

V/C - Volume to Capacity Ratio

95th - 95th Percentile Queue Length Storage - Existing Storage (m)

Avail. - Available Storage (m)

TCS - Traffic Control Signal

- Shared Right-Turn Lane- Shared Left-Turn Lane

5.1 Future Recreation Centre Access

At present, the Alder Street Recreation Centre is accessed via:

- one right in/right out driveway connection to Alder Street located about 50 metres east of the east curb line of Riddell Road; and
- one all-turns driveway connection to Alder Street located about 105 metres east of the east curb line of Riddell Road.

The Town has plans to relocate the right in/right out driveway connection from Alder Street to Riddell Road near the northerly limits of the existing parking lot. It is expected that when this occurs, there will be a change in traffic patterns northbound on Riddell Road at Alder Street whereby right turns destined to the Recreation Centre will reassign to the through movement to enter the Recreation Centre via the new right in/right out entrance (on Riddell Road). Note that the actual percentage re-assignment is not known at this time.

With this relocation, it is recommended that a dedicated inbound rightturn lane and a dedicated outbound acceleration lane be provided at the site driveway connection to Riddell Road. Since this driveway will be located on an arterial road, these lanes will provide safe areas for vehicles to decelerate when entering the site and accelerate before merging into traffic on Riddell Road. The appropriate pavement markings and signage, as per Ontario Traffic Manual, should be provided for both the inbound and outbound lanes.

As previously outlined, the northbound through movement is forecast to experience congestion at the 2031 horizon without additional capacity. However, with provision of the additional through lane, the movement will operate at acceptable levels of service and with spare capacity, capable of accommodating the re-assigned Recreation Centre volumes. Furthermore, the additional lane will continue on the far-side (north side) of the intersection where it can become the dedicated right-turn lane into the Recreation Centre.

6 Riddell Road and Centennial Road/ Spencer Avenue Remedial Options

The results of the analyses in **Chapter 4** indicate that remedial measures will not be required to provide sufficient capacity and acceptable levels of service at this intersection. However, several issues were identified by Town staff at the outset of the study, including:

- Offset of the northbound and southbound left-turn lanes; and
- Motorists using the southbound dedicated right-turn lane as a through lane to avoid the southbound through lane queue.

The following outlines the recommended improvements for three time periods: immediate implementation (within one year), intermediate-term implementation (2 to 5 years) and longer-term implementation (>5 years).

6.1 Immediate Implementation (within One Year)

6.1.1 Left-Turn Signal Timing Phase Justification

The need for left-turn signal timing phases at the study area intersections was assessed based on the information contained in Book 12 Traffic Signals of the Ontario Traffic Manual (OTM)⁷. Section 3.5 Phase Determination, Left-Turn Phase Justification outlines the methodology and states:

A left-turn phase may be justified:

- i. If the left-turning vehicles are not finding suitable turning gaps, volume exceeds at least two vehicles per cycle, and the Level of Service at the intersection will not be jeopardized; or
- ii. If the left-turn volume plus the opposing volume > 720 vehicles per hour; or
- iii. If a field check shows that vehicles consistently require more than two cycles in the queue in order to turn left; or
- iv. If an over-representation of left turning collisions is identified at the intersection.

⁷ Ontario Traffic Manual, Book 12, Traffic Signals, Queen's Printer for Ontario, March 2012

Table 6.1 outlines the results of the assessment and indicates that leftturn phases are not justified at the study area intersections based on the available data.

	Centenni	al/Spencer
Criteria	AM	PM
>2 left turns per cycle	No	No
Volume >720 vph	No	No
>2 cycles to turn left	No	No
Left-turning collisions	n/a	n/a

TABLE 6.1: LEFT-TURN PHASE JUSTIFICATION

6.1.2 Protected Left-Turn Signal Phasing

As outlined above, left-turn signal timing phases are not currently justified at the intersection. However, OTM Book 12 Section 3.5 Phase Determination, Fully Protected Simultaneous Left Turn Phase states: *"The fully protected simultaneous left turn operation is used where the visibility of vehicles making left turns to the opposing traffic (or vice versa) is limited, or where distractions caused by turning traffic are a concern"* or *"...on high speed roads with potential visibility problems due to geometry, or where collision problems exist".*

Additionally, Chapter 9.17.4.5 Left-Turn Lanes on Both Approaches of the TAC GDGCR states the following for adjacent (offset) left-turn lanes, "Visibility problems result from the presence of vehicles in adjacent left-turn lanes and, for this reason, such movements should generally only be used at signalized intersections with protected left turn phases".

Based on OTM and TAC guidance, provision of protected left-turn phasing is warranted for the northbound and southbound left-turn movements. Therefore, it is recommended that protected left-turn phasing be implemented at this intersection in the immediate term to increase overall safety at the intersection and in the immediate area.

Required Equipment

The following equipment will be required on each approach to permit implementation of the protected phasing:

 Type 2 signal head⁸ (circular red indication, a circular amber indication and green arrow indication);

⁸ Figure 2 – Traffic Control Signal Heads, OTM Book 12, Traffic Signals, Queen's Printer for Ontario, March 2012

- Mounting pole/mast arm;
- ▶ A Rb-81 LEFT-TURN SIGNAL sign⁹; and
- Signal timing plan changes

In addition to this equipment, it is recommended that left-turn lane extension markings are also provided to guide vehicles on the correct path through the intersection (**Figure 6.1**).

Operational Impacts

Synchro analyses were completed for the intersection with the protected left-turn phasing in place. The results are outlined in **Table 6.1** and indicate:

- AM Peak Hour
 - The intersection is forecast to operate at an overall LOS D with a v/c ratio of 0.77 (an increase of 0.09); and
 - No critical movements are noted.
- PM Peak Hour
 - The intersection is forecast to operate at an overall LOS D with a v/c ratio of 0.86 (an increase of 0.07); and
 - The northbound through movement is forecast to operate at LOS D with a v/c ratio of 0.88; however, this is not considered critical under the Town's TIS guidelines; and
 - The westbound left-turn movement if forecast to exceed available storage by 23 metres; and
 - The northbound right-turn movement is forecast to exceed storage by three metres.

⁹ OTM Book 5, Regulatory Signs, Queen's Printer for Ontario, March 2000

Example Left-Turn Lane Line Extension

Riddell Road Assessment of Intersections 200195

Figure 6.1

TABLE 6.1: 2031 TRAFFIC OPERATIONS – SPENCER AVE/CENTENNIAL RD WITH PROTECTED LEFT-TURN PHASING

od									D	irectio	n / Mo	overne	nt / Ap	proad	:h					
Peri					Eastb	ound			West	oound			North	bound			South	bound		
Analysis I	Intersection	Туре	MOE	Left	Through	Right	Approach	Left	Through	Right	Approach	Left	Through	Right	Approach	Left	Through	Right	Approach	OVERALL
<u> </u>			LOS	С	D	٧	D	С	С	<	С	Е	С	С	C	Е	С	В	D	D
hou			Delay	34	52	>	49	34	27	>	30	70	30	21	34	57	27	14	35	37
Peak H	Riddell Road & Spencer Avenue/ TCS Centennial Road	TCS	V/C	0.28	0.83	>		0.64	0.28	>		0.70	0.58	0.07		0.78	0.72	0.01		0.77
		103	95th	27	84	>		37	40	>		32	95	9		77	152	0		
AM			Storage	50	-	>		40	-	>		105	-	60		165	-	160		
			Avail.	23	-	>		3	-	>		73	-	51		88	-	160		
<u> </u>			LOS	D	D	>	D	Е	D	>	D	Е	D	В	D	F	С	В	D	D
noț			Delay	45	50	>	49	63	44	>	52	56	37	14	37	85	23	16	37	41
ж Н		TCS	V/C	0.41	0.66	>		0.84	0.70	>		0.73	0.88	0.16		0.84	0.45	0.02		0.86
Pe	Centennial Road	100	95th	27	67	>		63	95	>		69	243	63		63	93	0		
PM			Storage	50	-	>		40	-	>		105	-	60		165	-	160		
			Avail.	23	-	>		-23	-	>		36	-	-3		102	-	160		

MOE - Measure of Effectiveness

LOS - Level of Service

V/C - Volume to Capacity Ratio

95th - 95th Percentile Queue Length

Storage - Existing Storage (m) Avail. - Available Storage (m) TCS - Traffic Control Signal

- Shared Right-Turn Lane- Shared Left-Turn Lane

Protected phasing can be a trade off where one problem is solved and another is created simply because no other movements, including pedestrians, can operate during the phase. However, the increase in overall intersection safety is paramount over the minor increase in intersection delay that occurs. Furthermore, the intersection will still have residual capacity, albeit with some congestion, especially during the PM peak hour. Therefore, it is recommended the protected phasing is implemented in the immediate term.

Appendix F contains the detailed Synchro reports.

6.1.3 Southbound Right-Turn Lane

At present, some motorists are using the dedicated southbound right turn lane as a through lane to avoid the southbound through lane queue. There are several factors that permit this to occur:

- There is no physical barrier preventing vehicles from completing this manoeuvre; and
- The pavement width of the receiving lane(s) area and the lack of pavement markings on the south side of the intersection permits it to operate as two lanes.

To mitigate these issues, it is recommended that the following are implemented in the immediate term to curtail this practice and increase the overall safety of the intersection:

Install collapsible bollards at the "end" of the right turn lane to limit the ability of vehicles to travel through the intersection. Supplementary pavement markings such as additional turn lane arrows and "Right Turn Lane" pavement lettering could be provided to indicate to drivers that the lane exits onto Spencer Avenue.

Required Equipment

The following equipment will be required to facilitate the recommended changes:

- Pavement markings, and
- Installation of an appropriate and maintenance-friendly barrier that is acceptable to both the County of Dufferin and Town of Orangeville

Figure 6.2 provides a conceptual plan illustrating these remedial measures.

Figure 6.2

Mitigation Measures Plan porodigm Riddell Road Southbound Right-Turn Lane Conceptual

6.2 Intermediate Implementation (within Two to Five Years)

6.2.1 Left-Turn Lane Alignment

As outlined in **Section 6.1**, implementation of protected northbound and southbound left-turn signal phasing will provide for safer left turns but with a decrease in overall intersection level of service and congestion. Alternatively, the Town could undertake an alignment of the left-turn lanes. The alignment would ultimately remove the need for the protected left-turn phases as adequate sight distance would be provided for the opposing movements at the conclusion of construction. This would result in the acceptable levels of service outlined in **Chapter 4**.

It should be noted that if the Town proceeds with the roadway realignment, it will not negate the need to provide the protected left-turn phasing in the immediate term. As well, if the Town decides to explore changes in traffic control at this intersection in the long-term (**Chapter 7**), the lane re-alignment may not be required depending on the timing of the changes and success of the protected phasing.

6.2.2 Southbound Right-Turn Lane

Remedial measures that could be considered in the intermediate to longer-term for this intersection are: Convert the dedicated southbound right-turn lane into a shared through/right-turn lane;

- Install pavement markings on the south side of the intersection, demarcating two separate through lanes; and
- Terminate the curb lane at the commercial (hotel) entrance located approximately 100 metres south of the south curb line of Spencer Avenue.

Prior to development of the commercial parcel, the lane should terminate in this area. After development of the parcel, this lane can be reassigned to a right-in only lane for the property.

An additional benefit of this lane is that is will also function as an acceleration lane for vehicles turning right onto Riddell Road from Spencer Avenue.

Required Equipment

The following equipment will be required to facilitate the recommended changes:

▶ Pavement markings,

- Removal of Wa-56R RIGHT LANE EXITS sign
- Installation of Wa-23R LANE ENDS sign¹⁰; and
- Signal timing plan changes

Operational Impacts

Synchro analyses were completed for the intersection with the lane reassignment and aforementioned protected left-turn phasing in place. The results are outlined in **Table 6.2** and indicate:

- AM Peak Hour
 - The intersection is forecast to operate at an overall LOS C with a v/c ratio of 0.69 (decrease of 0.08 from previous analyses); and
 - No critical movements are noted.
- PM Peak Hour
 - The intersection is forecast to operate at an overall LOS D with a v/c ratio of 0.86 (no change from previous analyses); and
 - The northbound through movement is forecast to operate at LOS D with a v/c ratio of 0.88; however, this is not considered critical under the Town's TIS guidelines; and
 - The westbound left-turn movement if forecast to exceed available storage by 23 metres; and
 - The northbound right-turn movement is forecast to exceed storage by three metres.

Overall, the lane re-assignment coupled with the protected left-turn phasing results in slightly improved intersection operations during the AM peak hour with no change during the PM peak hour. As with implementation of the protected left-turn phases, the increase in overall intersection safety outweighs the impacts to operations. However, the additional through lane is not required from an operational perspective as previously outlined in **Chapter 4**.

Appendix G contains the detailed Synchro reports.

¹⁰ OTM Book 5, Regulatory Signs, Queen's Printer for Ontario, March 2000

TABLE 6.2: 2031 TRAFFIC OPERATIONS – SPENCER AVE/CENTENNIAL RD WITH LANE RE-ASSIGNMENT

od									Di	irectio	n / Mo	overne	nt / Ap	proad	:h					
Peri		_			Eastb	ound			Westk	oound			North	bound			South	bound		
Analysis I	Intersection	Туре	MOE	Left	Through	Right	Approach	Left	Through	Right	Approach	Left	Through	Right	Approach	Left	Through	Right	Approach	OVERALL
<u> </u>			LOS	С	D	>	D	С	С	>	С	D	С	С	С	Е	В	А	С	С
lou			Delay	34	53	>	50	32	27	>	29	52	31	22	32	57	20	0	29	34
eak F	Riddell Road & Spencer Avenue/ Centennial Road	TCS	V/C	0.28	0.83	>		0.61	0.27	>		0.55	0.59	0.07		0.78	0.4	0.00		0.69
Pe		105	95th	27	85	>		36	39	>		28	95	9		77	63	0		
M			Storage	50	-	>		40	-	>		105	-	60		165	-	160		
			Avail.	23	-	>		4	-	>		77	-	51		88	-	160		
			LOS	D	D	٧	D	Е	D	>	D	Е	D	В	D	F	В	А	С	D
lou	D . 1 1 D 1 4		Delay	45	50	>	49	63	44	>	52	56	37	14	37	85	19	0	35	41
Riddell Road &		TCS	V/C	0.41	0.66	>		0.84	0.70	>		0.73	0.88	0.16		0.84	0.26	0.00		0.86
Pe	Centennial Road	103	95th	27	67	>		63	95	>		69	243	63		63	43	0		
M	Contonnia rioda		Storage	50	-	>		40	-	>		105	-	60		165	-	160		
			Avail.	23	-	>		-23	-	>		36	-	-3		102	-	160		

MOE - Measure of Effectiveness

LOS - Level of Service

V/C - Volume to Capacity Ratio

95th - 95th Percentile Queue Length

Storage - Existing Storage (m) Avail. - Available Storage (m) TCS - Traffic Control Signal

- Shared Right-Turn Lane- Shared Left-Turn Lane

7 Long-Term (>5 Years) Remedial Measures – Both Intersections

Roundabouts at both study area intersections have been identified as a long-term remedial measures to accommodate the 2031+ traffic volumes. Three design scenarios were completed for each intersection using TORUS roundabout design software and analyzed using ARCADY. The scenarios are:

- Scenario 1: one-lane entry on all approaches;
- Scenario 2: two-lane entry on the north and south approaches and one-lane entry at the east and west approaches; and
- **Scenario 3**: two-lane entry on all approaches.

The y-intercept adjustment for all scenarios is 90% as per typical industry standards since the horizon is more than 10 years from the date of this report. All scenarios were completed using the forecast 2031 traffic volumes and existing heavy vehicle percentages.

7.1 Scenario 1: One-Lane Entry on All Approaches

The scenario includes a roundabout with a 40-metre diameter with one entry lane on each approach.

Table 7.1 summarizes the Scenario 1 operations. The results indicate that both intersections are forecast to operate with acceptable levels of service and within capacity during the AM peak hour. During the PM peak hour, the intersections are forecast to operate at overall LOS F and with v/c ratios >1.0 on the northbound approaches at each intersection.

Overall, additional capacity will be required on the northbound approaches to provide acceptable levels of service during the PM peak hour; therefore, roundabouts with one entry lane on each approach is not recommended at either intersection.

Intersection	Intersection Approach	Queue (PCE)	Delay (sec)	V/C Ratio	Overall LOS	Intersection Delay (sec)
		AM Pe	eak Hour			
	Westbound (East Leg)	1.04	5.57	0.31		
Riddell Road at	Southbound (North leg)	10.23	15.73	0.76		11.62
Alder Street	Eastbound (West leg)	1.07	9.81	0.42	В	11.05
	Northbound (South leg)	1.16	10.01	0.59		
	Westbound (East Leg)	1.07	6.48	0.36		
Riddell Road at	Southbound (North leg)	13.72	19.26	0.80		13.06
Spencer Avenue	Eastbound (West leg)	2.04	13.64	0.60		13.90
	Northbound (South leg)	1.22	10.70	0.56		
		PM Pe	eak Hour			
	Westbound (East Leg)	2.03	11.32	0.54		
Riddell Road at	Southbound (North leg)	1.08	9.91	0.60		51.24
Alder Street	Eastbound (West leg)	1.00	5.49	0.18		51.54
	Northbound (South leg)	90.68	91.40	1.02		
	Westbound (East Leg)	11.66	25.70	0.79		
Riddell Road at	Southbound (North leg)	2.30	12.16	0.60	_	105.23
Spencer Avenue	Eastbound (West leg)	1.02	6.77	0.34		103.23
	Northbound (South leg)	132.83	208.57	1.12		

TABLE 7.1: SCENARIO 1 ARCADY ANALYSES

7.2 Scenario 2: Partial Two-Lane Entry

This scenario includes a roundabout with a 47.5-metre inscribed circle diameter, one entry lane on the side street approaches and two entry lanes on Riddell Road.

Table 7.2 summarizes the Scenario 2 operations. The results indicate that both intersections are forecast to operate with acceptable levels of service during the AM and PM peak hours and with spare capacity. It should be noted that the southbound leg of Riddell Road with Centennial Road/Spencer Avenue is forecast to operate at LOS D

during the PM peak hour. This level of delay is typically acceptable and considered standard for left-turn movements.

Overall, the partial two-lane entry roundabout is the recommended <u>minimum</u> design for each intersection. It will provide acceptable levels of service, spare capacity and permit the addition of lanes if required in the future.

Intersection	Intersection Approach	Queue (PCE)	Delay (sec)	V/C Ratio	Overall LOS	Intersection Delay (sec)	
		AM Pe	ak Hour				
	Westbound (East Leg)	1.04	5.50	0.30			
Riddell Road at	Southbound (North leg)	1.00	4.98	0.49	_	5 46	
Alder Street	Eastbound (West leg)	1.07	9.34	0.40		5.40	
	Northbound (South leg)	1.16	4.29	0.38			
	Westbound (East Leg)	1.07	6.36	0.36			
Riddell Road at Centennial Road/ Spencer Avenue	Southbound (North leg)	1.00	5.35	0.52	Δ	6 74	
	Eastbound (West leg)	2.04	12.72	0.58		0.74	
	Northbound (South leg)	1.22	4.62	0.36			
		PM Pe	ak Hour				
	Westbound (East Leg)	2.03	11.27	0.54			
Riddell Road at	Southbound (North leg)	1.08	4.15	0.39	Δ	6 77	
Alder Street	Eastbound (West leg)	1.00	5.36	0.18		0.11	
	Northbound (South leg)	3.16	6.80	0.67			
	Westbound (East Leg)	16.96	34.07	0.83			
Riddell Road at	Southbound (North leg)	1.15	4.87	0.37	P	13 79	
Spencer Avenue	Eastbound (West leg)	1.02	6.60	0.33		13.70	
	Northbound (South leg)	4.83	9.92	0.72			

TABLE 7.2: SCENARIO 2 ARCADY ANALYSES

Figure 7.1a and **Figure 7.1b** illustrate the roundabout placement for each intersection. The drawings show that a roundabout with a 47.5-metre inscribed circle diameter can be accommodated within the existing right-of-way of each intersection.

Figure 7.1a

Alder Street TORUS Roundabout Design 47.5 Metre Inscribed Circle Diameter

Figure 7.1b

Centennial Road/Spencer Avenue TORUS Roundabout Design 47.5 Metre Inscribed Circle Diameter

7.3 Scenario 3: Two-Lane Entry on All Approaches

This scenario analyzes a roundabout with a 55-metre inscribed circle diameter with two entry lanes on all approaches.

Table 7.3 summarizes the Scenario 3 operations. The results indicate that both intersections are forecast to operate with acceptable levels of service and within spare capacity during both the AM and PM peak hours.

Overall, the full two-lane entry roundabout design is an acceptable design for each intersection as it will provide acceptable levels of service on all approaches, spare capacity on Riddell Road and significant spare capacity on the side street approaches.

Intersection	Intersection Approach	Queue (PCE)	Delay (sec)	V/C Ratio	Overall LOS	Intersection Delay (sec)
		AM Pe	eak Hour			
	Westbound (East Leg)	1.04	5.50	0.30		
Riddell Road at	Southbound (North leg)	1.00	4.98	0.49		5.46
Alder Street	Eastbound (West leg)	1.07	9.34	0.40	A	5.40
	Northbound (South leg)	1.16	4.29	0.38		
	Westbound (East Leg)	1.07	6.36	0.36		
Riddell Road at Centennial Road/ Spencer Avenue	Southbound (North leg)	1.00	5.35	0.52		6 74
	Eastbound (West leg)	2.04	12.72		0.74	
	Northbound (South leg)	1.22	4.62	0.36		
		PM Pe	eak Hour			
	Westbound (East Leg)	2.03	11.27	0.54		
Riddell Road at	Southbound (North leg)	1.08	4.15	0.39		6 77
Alder Street	Eastbound (West leg)	1.00	5.36	0.18		0.77
	Northbound (South leg)	3.16	6.80	0.67		
	Westbound (East Leg)	16.96	34.07	0.83		
Riddell Road at	Southbound (North leg)	1.15	4.87	0.37	P	10 70
Spencer Avenue	Eastbound (West leg)	1.02	6.60	0.33		13.70
	Northbound (South leg)	4.83	9.92	0.72		

TABLE 7.3: SCENARIO 3 ARCADY ANALYSES

Figure 7.2a and **Figure 7.2b** illustrate the roundabout placement for each intersection. The drawings show that a roundabout with a 55-metre inscribed circle diameter can be accommodated within the existing right-of-way at Centennial Road/Spencer Avenue. At Alder Street, minimal property acquisition may be required; however, this could be definitively determined during detailed roundabout design.

Figure 7.2a

Alder Street TORUS Roundabout Design 55 Metre Inscribed Circle Diameter

Figure 7.2b

Centennial Road/Spencer Avenue TORUS Roundabout Design 55 Metre Inscribed Circle Diameter

Appendix H contains the detailed ARCADY reports for all three scenarios.

7.4 Roundabout Design

The Riddell Road corridor is a by-pass routing for heavy vehicles around the downtown area of Orangeville. As well, it also accommodates oversized/wide loads on a routine basis. Therefore, future roundabouts will need to be designed with mountable curbs to accommodate these vehicles which could increase the minimum inscribed circle diameter. This can be determined through a future detailed design study.

7.5 Roadway Widening

As outlined above, two entry lanes are required on Riddell Road at both intersections to provide adequate levels of service.

As discussed in **Chapter 5**, if an additional northbound through lane is provided on Riddell Road at Alder Street, this lane should continue north of the intersection and could become the dedicated right-turn lane for the relocated Recreation Centre Driveway.

Chapter 6 recommends intermediate-term re-assignment of the existing southbound right-turn lane on Riddell Road at Spencer Avenue to a shared through/right-turn lane, thereby providing two through lanes and the associated additional capacity.

Based on the above, the Town could consider widening Riddell Road between Alder Street and Centennial Road/Spencer Avenue to provide two through lanes in each direction. This will ensure adequate capacity through the area and will provide the required number of through lanes at each roundabout approach.

The need for this widening could be further assessed through a detailed corridor study which will also provide a longer-term plan for the entirety of Riddell Road.

7.6 Roundabout Summary

Based on the completed analyses, roundabouts are not required to provide adequate levels of service at the intersections at the 2031 horizon. However, provision of a roundabout with a minimum 47.5metre inscribed circle diameter with two entering lanes on Riddell Road and one entering lane on the side street approaches will provide adequate levels of service for the study area intersection at the 2031

horizon and additional spare capacity (beyond the intersection-specific recommendations) to accommodate growth beyond this horizon.

The need to accommodate oversized loads through the roundabouts present challenges that may need to be mitigated through design. This may ultimately result in the need to provide a larger inscribed circle diameter or special design considerations (mountable curbs). If a larger inscribed circle diameter is required, the cost could outweigh the benefit, especially if land acquisition is required.

Furthermore, provision of roundabouts at these intersections will likely affect operations of the upstream and downstream intersections on Riddell Road and the side streets (Alder Street, Centennial Road and Spencer Avenue). A corridor study will provide the Town and County with the opportunity to assess these potential impacts and develop a long-term plan that meets the needs of both agencies.

Overall, it is recommended the Town consider the cost-benefit analysis of roundabout provision versus the intersection-specific recommendations in the long-term. Additionally, it is recognized that any long-term improvements on this corridor may be dependent upon discussions with County of Dufferin and should be assessed through a more detailed corridor study.

8 Intersection Improvements Summary

The remedial measures selected for implementation at each intersection and the timing of these improvements are interconnected where the shorter term improvements are dependent upon the longerterm improvement plan. For example, if the Town proceeds with a roundabout at Centennial Road/Spencer Avenue, re-alignment of the northbound and southbound left-turn lanes may not be required if the protected signal phasing provides adequate levels of service and improves safety.

It is recommended the Town consider the costs and benefits of each identified improvement and carry out any required consultation with County staff. As well, it is also recommended the Town consider conducting a Riddell Road corridor study to identify any longer-term (+2031) roadway capacity issues (**Chapter 9**). These will help the Town develop the preferred improvement plan which will address the identified corridor issues, provide the required future capacity and assist in future Capital Budget forecasts.

Table 8.1 provides a 3-tier general cost for each identified Alder Street and Centennial Road/Spencer Avenue intersection improvement: low cost, moderate cost and high cost.

Note that regardless of the timing of improvements, the remedial measure of protected left-turn phasing at Riddell Road and Centennial Road/Spencer Avenue should be implemented in the immediate term to conform to Transportation Association of Canada *Geometric Design Guide for Canadian Roads* guidance.

		Cost	
Improvement Measure	Low	Moderate	High
Signal timing adjustments			
Pavement markings			
Sign removal or installation	\checkmark		
Knock-down barriers	\checkmark		
Signal head installation (including all hardware)		\checkmark	
Left-Turn Lane Alignment		\checkmark	
Riddell Road Corridor Study: Caledon Garafraxa Townline to Broadway		\checkmark	
Roundabout installation			\checkmark
Roadway widening Alder to Centennial/Spencer (additional through lane per direction)			\checkmark

TABLE 8.1: IMPROVEMENTS COSTS

9 Supplemental Riddell Road Corridor Recommendations

9.1 Corridor Study

It is recommended that the Town undertake a corridor study for Riddell Road between Caledon Garafraxa Townline and Broadway. The purpose of this study will be to assess the long-term needs of the corridor in terms of capacity, intersection control and access arrangements (including restrictions). The potential for and need to provide signal progression on the corridor can also be explored. It is recommended the study be undertaken for four horizons: 5 years, 10 years, 15 years and 20 years.

Additionally, corridor study will help the Town refine the longer-term corridor improvement plan by expanding on the analyses and recommendations contained herein.

9.2 Signal Timing Review

It is recommended the Town undertake regular reviews of the signal timing and phasing plans and resulting intersection operations. These reviews will assist the Town in mitigating capacity and safety issues before intersection operations deteriorate to unacceptable levels or collisions increase. Retention of all data will also enable the Town to easily compare the impacts of any refined timing or phasing plans. As well, the data can be used for future in-house intersection analyses.

9.3 Collision Database

As with most smaller municipalities in Ontario, the availability of recent (within the past five years) detailed collision data is scarce to nonexistent in Orangeville. However, this data is an important tool to help determine where mitigation may be required.

It is recommended the Town create an account with the Ministry of Transportation Ontario (MTO) to request collision records and start a collision database. Records should be requested on a yearly basis to minimize the effort required to input the data. Note that the data will be provided in a multi-layer single collision file that will require manipulation before it can be analyzed. Given this, it is further recommended that the Town consult with other municipalities within Ontario to consider approaching MTO to request the data is provided in a ready-to-analyze format.

10 Conclusions and Recommendations

10.1 Conclusions

Additional capacity will be required at the Riddell Road intersections with Alder Street and Centennial Road/Spencer Avenue upon reaching the 2031 forecast traffic volumes. Several remedial measures have been identified for each intersection including provision of additional capacity through additional lanes and/or lane re-assignment or changes in traffic control.

The remedial measures selected for implementation at each intersection and the timing of these improvements are interconnected where the shorter term improvements are dependent upon the longerterm improvement plan.

10.2 Recommendations

It is recommended the Town consider the costs and benefits of each identified improvement and carry out required consultation with County staff. It is also recommended the Town consider conducting a Riddell Road corridor study to identify any longer-term (+2031) roadway capacity needs. These will help the Town develop the preferred improvement plan which will address the identified corridor issues, provide the required future capacity and assist in preparing future Capital Budget forecasts.

Note that regardless of the timing of improvements, the remedial measure of protected left-turn phasing at Riddell Road and Centennial Road/Spencer Avenue should be implemented in the immediate term to conform to Transportation Association of Canada *Geometric Design Guide for Canadian Roads* (2017) guidance.

Appendix A

Collision Data

						2014 - RIDDELL AND ALDER
	Occ #	Dom T	Гуре	Time So	core Notes	
1)	OV14001991	OrgVI N	Notor vehicle collision	2014-02-20 9:04	Complete - solved (non-criminal)	- RIDDELL RD and ALDER ST, TOWN OF ORANGEVILLE ON Canada (Beat: O, ESZ: 81400) 2/20/2014 12:52:39 - Reportable / Event comments: ORANGEVILLE 14 WL2 90 LAT:43 54 12:859N LONG:080 07 35:319W UNC:14 CONF:90 (51 /
2)	OV14002341	OrgVI N	Notor vehicle collision	2014-02-28 7:40	Complete - solved (non-criminal)	- RIDDELL RD and ALDER ST, TOWN OF ORANGEVILLE ON Canada (Beat: O, ESZ: 81400) 2/28/2014 08:37:50 - Reportable / Event comments: 2 VEHICLE MVC PI / JUST SOUTH OF ALDER ON RIDDELL / New equipment list for Unit [67] :
3)	OV14002344	OrgVI N	Notor vehicle collision	2014-02-28 8:20	Complete - solved (non-criminal)	- RIDDELL RD and ALDER ST, TOWN OF ORANGEVILLE ON Canada (Beat: O, ESZ: 81400) 2/28/2014 10:04:56 - Reportable / Event comments: CRUISER 104 HAS BEEN INVOLVED IN ACCIDENT / SHUTTING DOWN S/B RIDDELL RD / PC N
4)	OV14004397	OrgVI N	Notor vehicle collision	2014-04-15 19:36	Complete - solved (non-criminal)	- RIDDELL RD and ALDER ST, ORANGEVILLE CROMS incident (501836581) / / 4/15/2014 20:17:15 - Reportable / Event comments: 2 VEH MVC PD - VEH KIA / NO INJ / AMB DISP / FIRE DISP / REQ 2 TOWS / RON COLE / ROYA
5)	OV14005329	OrgVI N	Notor vehicle collision	2014-05-02 6:08	Complete - solved (non-criminal)	- RIDDELL RD and ALDER ST, TOWN OF ORANGEVILLE ON Canada (Beat: O, ESZ: 81400) CROMS Incident (501843976) // 5/2/2014 14:03:22 - Reportable / Event comments: NEW INFORMATION / / / Closing comr
6)	OV14005954	OrgVI N	Notor vehicle collision	2014-05-15 8:06	Complete - solved (non-criminal)	- RIDDELL RD and ALDER ST, TOWN OF ORANGEVILLE ON Canada (Beat: O, ESZ: 81400) CROMS Incident (501848870) // 5/15/2014 08:54:24 - Reportable / Event comments: WL2 (51 CENTINIAL DR, ORANGEVILLE, 3026104
7)	OV14007649	OrgVI N	Notor vehicle collision	2014-06-19 17:30	Complete - solved (non-criminal)	- RIDDELL RD and ALDER ST, TOWN OF ORANGEVILLE ON Canada (Beat: O, ESZ: 81400) CROMS Incident (501861046) // 6/19/2014 19:18:07 - Reportable / Event comments: 3 VEH MVC / REQUEST 2 TOW TRUCK / REQUEST
8)	OV14009123	OrgVI N	Notor vehicle collision	2014-07-19 18:49	Complete - solved (non-criminal)	- RIDDELL RD and ALDER ST, TOWN OF ORANGEVILLE ON Canada (Beat: O, ESZ: 81400) CROMS Incident (501871559) / / 7/19/2014 19:48:23 - Reportable / Event comments: "RIDDELL RD/ALDER ST ORA" at: 2014/07/19 19
9)	OV14010783	OrgVI N	Notor vehicle collision	2014-08-27 20:12	Complete - solved (non-criminal)	- CROMS Incident (501888686) / / 8/27/2014 20:48:02 - Reportable / Event comments: WL2 (BROADWAY AVE/2ND LINE,513090 2ND LINE, AMARANTH TWP) OMNI ROGERS WIRELESS / Duplicate Event: Location = RIDDELL
10)	OV14011115	OrgVI N	Notor vehicle collision	2014-09-04 8:52	Complete - solved (non-criminal)	- RIDDELL RD and ALDER ST, TOWN OF ORANGEVILLE ON Canada (Beat: 0, ESZ: 81400) CROMS Incident (501888703) / / 9/4/2014 09:47:38 - Reportable / Event comments: 2 VEH - PULLED OVER / ON RIDDELL N OF ALDER
11)	OV14013820	OrgVI N	Notor vehicle collision	2014-11-07 17:53	Complete - solved (non-criminal)	- RIDDELL RD and ALDER ST, TOWN OF ORANGEVILLE ON Canada (Beat: O, ESZ: 81400) 11/7/2014 19:01:06 - Reportable / Event comments: LIC# AXLT564 / OTHER VEHICLE / LIC#AVJH646 / 115/4/w/2300 / New equipment list for Ur

	Occ #	Dom	Туре	Time	Score	Notes
1)	0\/15001885	OrgVI	Motor vehicle collision	2015-02-20 11.26		Hist - Complete - Unsolved - RIDDELL RD and ALDER ST. TOWN OF ORANGEVILLE ON Canada (Reat: O. ES7: 81400) 2/20/2015 12:31:56 - Reportable / Event comments: SUSPECT VEH H
2)	OV15002893	OrgVI	Motor vehicle collision	2015-02-20 11:20		Cleared by charge (includes charges recommended) - RIDDELL RD and ALDER ST, TOWN OF ORANGEVILLE ON CANada (Beat: 0, ESZ: 81400) 3/16/2015 16:24:27 - Reportable / Event c
3)	OV15003113	OrgVI	Motor vehicle collision	2015-03-21 17:06		Cleared by charge (includes charges recommended) - RIDDELL RD and ALDER ST, TOWN OF ORANGEVILLE ON Canada (Beat: O, ESZ: 81400) 3/21/2015 17:44:38 - Reportable / Event c
4)	OV15004874	OrgVI	Motor vehicle collision	2015-04-25 17:23		Cleared by charge (includes charges recommended) - RIDDELL RD and ALDER ST, TOWN OF ORANGEVILLE ON Canada (Beat: O, ESZ: 81400) 4/25/2015 18:20:03 - Reportable / Event c
5)	OV15006775	OrgVI	Motor vehicle collision	2015-06-02 19:13		Complete - solved (non-criminal) - RIDDELL RD and ALDER ST, TOWN OF ORANGEVILLE ON Canada (Beat: O, ESZ: 81400) 6/2/2015 20:47:56 - Reportable / Event comments: 1 VEH INV
6)	OV15010622	OrgVI	Motor vehicle collision	2015-08-14 16:18		Complete - solved (non-criminal) - RIDDELL RD and ALDER ST, TOWN OF ORANGEVILLE ON Canada (Beat: O, ESZ: 81400) 8/14/2015 16:25:26 - Non-reportable / Event comments: SOU
7)	OV15012818	OrgVI	Motor vehicle collision	2015-10-02 16:41		Complete - solved (non-criminal) - RIDDELL RD and ALDER ST, TOWN OF ORANGEVILLE ON Canada (Beat: O, ESZ: 81400) 10/2/2015 17:18:40 - Reportable / Event comments: JUST NO
8)	OV15014926	OrgVI	Impaired/over 80	2015-11-21 17:35		Cleared by charge (includes charges recommended) - RIDDELL RD and ALDER ST, TOWN OF ORANGEVILLE ON Canada (Beat: O, ESZ: 81400) 11/21/2015 19:59:47 - Reportable / Event
9)	OV15015434	OrgVl	Motor vehicle collision	2015-12-03 20:47		Cleared by charge (includes charges recommended) - RIDDELL RD and ALDER ST, TOWN OF ORANGEVILLE ON Canada (Beat: O, ESZ: 81400) 12/3/2015 21:30:20 - Reportable / Event c

	Occ #	Dom Type	Time	Score Notes
1)	OV16004000	OrgVI Motor vehicle collision	2016-03-20 16:33	Complete - solved (non-criminal) - RIDDELL RD and ALDER ST, ORANGEVILLE ON Canada (Beat: O, ESZ: 81417) 3/20/2016 17:21:18 - Reportable / Event comments: MVC PD ONLY / /
2)	OV16009709	OrgVI Motor vehicle collision	2016-06-19 18:02	Complete - solved (non-criminal) - RIDDELL RD and ALDER ST, TOWN OF ORANGEVILLE ON Canada (Beat: O, ESZ: 81400) 6/19/2016 18:45:47 - Reportable / Event comments: MVC-PD
3)	OV16011358	OrgVI Motor vehicle collision	2016-07-18 14:08	Cleared by charge (includes charges recommended) - RIDDELL RD and ALDER ST, TOWN OF ORANGEVILLE ON Canada (Beat: O, ESZ: 81400) 7/18/2016 17:11:51 - Reportable / Event c
4)	OV16013931	OrgVI Motor vehicle collision	2016-08-31 15:40	Cleared by charge (includes charges recommended) - RIDDELL RD and ALDER ST, TOWN OF ORANGEVILLE ON Canada (Beat: O, ESZ: 81400) 9/1/2016 06:25:57 - Reportable / Event co
5)	OV16019047	OrgVI Motor vehicle collision	2016-12-15 15:09	Complete - solved (non-criminal) - RIDDELL RD and ALDER ST, TOWN OF ORANGEVILLE ON Canada (Beat: O, ESZ: 81400) 12/15/2016 15:57:22 - Reportable / Event comments: 2 VEHS

Occ #	Dom	Туре	Time	Score	Notes
OV17003543	OrgVl	Motor vehicle collision	****		Cleared by charge (includes charges recommended) - RIDDELL RD and ALDER S
OV17009539	OrgVl	Motor vehicle collision	#################		Complete - solved (non-criminal) - RIDDELL RD and ALDER ST, ORANGEVILLE O
OV17013546	OrgVI	Motor vehicle collision	#################		Cleared by charge (includes charges recommended) - 9/29/2017 16:03:19 - Re
OV17008898	OrgVl	Motor vehicle collision	##################		Cleared by charge (includes charges recommended) - ALDER ST and RIDDELL R
OV17013546	OrgVl	Motor vehicle collision	#######################################		Cleared by charge (includes charges recommended) - 9/29/2017 16:03:19 - Re
OV17013548	OrgVI	Motor vehicle collision	#######################################		Cleared by charge (includes charges recommended) - ALDER ST and RIDDELL R

1)

2)

3)

4)

5) 6) Cleared by charge (includes charges recommended) - RIDDELL RD and ALDER ST, ORANGEVILLE ON Canada (Beat: O, ESZ: 81417) 3/20/2017 17:00:51 - Reportable / Event comments: Complete - solved (non-criminal) - RIDDELL RD and ALDER ST, ORANGEVILLE ON (ORANGEVILLE) (Beat: O, ESZ: 81400) 7/15/2017 18:22:31 - Reportable / Event comments: WAS REAR Cleared by charge (includes charges recommended) - 9/29/2017 16:03:19 - Reportable / Event comments: COMPL PLATE: BXNF860 / OTHER: BPND854 / REQUEST NEXT TRUCK ON TH Cleared by charge (includes charges recommended) - ALDER ST and RIDDELL RD, ORANGEVILLE ON Canada (Beat: O, ESZ: 81400) 7/3/2017 17:49:05 - Reportable / Event comments: 2 Cleared by charge (includes charges recommended) - 9/29/2017 16:03:19 - Reportable / Event comments: COMPL PLATE: BXNF860 / OTHER: BPND854 / REQUEST NEXT TRUCK ON TH Cleared by charge (includes charges recommended) - 9/29/2017 16:03:19 - Reportable / Event comments: COMPL PLATE: BXNF860 / OTHER: BPND854 / REQUEST NEXT TRUCK ON TH Cleared by charge (includes charges recommended) - 9/29/2017 16:03:19 - Reportable / Event comments: COMPL PLATE: BXNF860 / OTHER: BPND854 / REQUEST NEXT TRUCK ON TH Cleared by charge (includes charges recommended) - 9/29/2017 16:03:19 - Reportable / Event comments: COMPL PLATE: BXNF860 / OTHER: BPND854 / REQUEST NEXT TRUCK ON TH Cleared by charge (includes charges recommended) - ALDER ST and RIDDELL RD, ORANGEVILLE ON Canada (Beat: O, ESZ: 81400) 9/29/2017 15:53:25 - Reportable / Event comments:

Occ # Dom Type Time Score Notes

1) OV18002296 OrgVI Motor vehicle collision 2018-02-26 7:22

6) OV18016477 OrgVI Motor vehicle collision 2018-11-26 8:12

Cleared by charge (includes charges recommended) - RIDDELL RD and ALDER ST, ORANGEVILLE ON (ORANGEVILLE) (Beat: O, ESZ: 81400) 2/26/2018 08:58:31 - Non-reportable / Event comments: SPECIAL ADDRESS COMMENT: / ***IF SECURI Cleared by charge (includes charges recommended) - RIDDELL RD and ALDER ST, ORANGEVILLE ON (ORANGEVILLE) (Beat: O, ESZ: 81400) 3/4/2018 17:41:55 - Non-reportable / Event comments: AT RED LIGHT - GOT REAR ENDED / HONDA CIV Complete - solved (non-criminal) - RIDDELL RD and ALDER ST, ORANGEVILLE (Beat: O, ESZ: 81400) 5/7/2018 19:13:41 - Reportable / Event comments: ALDER X RIDDELL MOVE OP OCCURED AT 12:30 HRS / REAR ENDED / OTH Cleared by charge (includes charges recommended) - RIDDELL RD and ALDER ST, ORANGEVILLE (DN (ORANGEVILLE) (Beat: O, ESZ: 81400) 5/28/2018 19:03:02 - Reportable / Event comments: 2 VEHS PD ONLY / 102/P40 / VEHS MOVED INTO C Complete - solved (non-criminal) - RIDDELL RD and ALDER ST, ORANGEVILLE (Beat: O, ESZ: 81400) 10/7/2018 15:25:59 - Reportable / Event comments: 2 VEHS PD ONLY / 102/P40 / VEHS MOVED INTO C Complete - solved (non-criminal) - RIDDELL RD and ALDER ST, ORANGEVILLE (Beat: O, ESZ: 81400) 10/7/2018 15:25:59 - Reportable / Event comments: 2 VEHS PD ONLY / 102/P40 / VEHS MOVED INTO C Complete - solved (non-criminal) - RIDDELL RD and ALDER ST, ORANGEVILLE (Beat: O, ESZ: 81400) 10/7/2018 15:25:59 - Reportable / Event comments: 2 VEHS PD ONLY / 102/P40 / VEHS MOVED INTO C Complete - solved (non-criminal) - RIDDELL RD and ALDER ST, ORANGEVILLE (DN (ORANGEVILLE) (Beat: O, ESZ: 81400) 11/2/2018 15:25:59 - Reportable / Event commented) - RIDDELL RD AND ALDER ST, ORANGEVILLE (DN (ORANGEVILLE) (BEAT: O, ESZ: 81400) 11/2/2018 15:25:59 - Reportable / Event commented) - RIDDELL RD AND ALDER ST, ORANGEVILLE (DN (ORANGEVILLE) (BEAT: O, ESZ: 81400) 11/2/2018 15:25:59 - Reportable / Event commented) - RIDDELL RD AND ALDER ST, ORANGEVILLE (BARGEVILLE) (

2019 ALDER AND RIDDELL

Occ #	Dom Type	Time	Score Notes	

1) OV19002613 OrgVI Motor vehicle collision 2019-03-07 7:25

- 3) OV19002613 OrgVI Motor vehicle collision 2019-03-07 7:25

- 6) OV19013199 OrgVI Motor vehicle collision 2019-10-09 9:07

Cleared by charge (includes charges recommended) - RIDDELL RD and ALDER ST, ORANGEVILLE ON (ORANGEVILLE) (Beat: O, ESZ: 81400) 3/7/2019 08:49:36 - Non-reportable / Event comments Complete - solved (non-criminal) - ALDER ST and RIDDELL RD, ORANGEVILLE ON Canada (Beat: O, ESZ: 81400) 6/21/2019 18:49:17 - Non-reportable / Event comments: 2 VEH MVC / ON SIDE O Cleared by charge (includes charges recommended) - RIDDELL RD and ALDER ST, ORANGEVILLE ON (ORANGEVILLE) (Beat: O, ESZ: 81400) 3/7/2019 08:49:36 - Non-reportable / Event comments Cleared by charge (includes charges recommended) - RIDDELL RD and ALDER ST, ORANGEVILLE ON (ORANGEVILLE) (Beat: O, ESZ: 81400) 3/27/2019 22:46:40 - Reportable / Event comments: Cleared by charge (includes charges recommended) - RIDDELL RD and ALDER ST, ORANGEVILLE ON (ORANGEVILLE) (Beat: O, ESZ: 81400) 7/18/2019 15:27:01 - Non-reportable / Event comments: Cleared by charge (includes charges recommended) - RIDDELL RD and ALDER ST, ORANGEVILLE ON (ORANGEVILLE) (Beat: O, ESZ: 81400) 7/18/2019 15:27:01 - Non-reportable / Event comments: Cleared by charge (includes charges recommended) - RIDDELL RD and ALDER ST, ORANGEVILLE ON (ORANGEVILLE) (Beat: O, ESZ: 81400) 7/18/2019 15:27:01 - Non-reportable / Event comments: Cleared by charge (includes charges recommended) - RIDDELL RD and ALDER ST, ORANGEVILLE ON (ORANGEVILLE) (Beat: O, ESZ: 81400) 10/9/2019 15:20:005 - Reportable / Event comments: Cleared by charge (includes charges recommended) - RIDDELL RD and ALDER ST, ORANGEVILLE ON (ORANGEVILLE) (Beat: O, ESZ: 81400) 10/9/2019 15:20:005 - Reportable / Event comments: M

2020 ALDER AND RIDDELL

Occ # Dom Type Time Score Notes

Complete - solved (non-criminal) - RIDOELIR Da and ALDER 37, ORAMGEVILLE ON (DAAAGEVILLE) (Beat-O, ES2: B1400) 2/(2)(2)200 10:15:03 - Reportable / Event comments: 2 VEH MVC / NO EMS / NO T BLOCKING TAAFTHC / EAST OF INTERSECTION / CHILD IN CAR / COMP SAID NO BMS- NO INUURIS / OFFICERS 10-6 / COMP SAID NO BMS- NO INUE / COMP SAID NO BMS- NO IN INUE / COMP SAID NO BMS- NO INUE / COMP SAID NO BMS AND NO

2017 RIDDELL AND SPENCER

Occ # Dom Type Time Score Notes

2018 RIDDELL AND SPENCER

Occ # Dom Type Time Score Notes

	0cc #	Dom Tuno	Timo	Secon Neter 2019 RIDDELL AND CENTENNIAL
	000 #	bolli Type	mie	Julie notes
1)	OV19002542	OrgVI Motor vehicle collision	******	Cleared by charge (includes charges recommended) - SPENCER AV and RIDDELL RD, ORANGEVILLE ON Canada 3/5/2019 16:56:18 - Reportable / Event comments: RIDDELL/SPENCER / WRONG SIDE OF ROAD - UP ON THE SNOW BANK / N SD OF SPENCER
2)	OV19002792	OrgVI Motor vehicle collision	******	Cleared by charge (includes charges recommended) - CENTENNIAL RD and RIDDELL RD, ORANGEVILLE ON (Beat: O, ESZ: 81400) 3/11/2019 17:29:27 - Reportable / Event comments: FML PARTY REAR ENDED A CAR THEN BUMPED INTO THE NEXT / THEY A
3)	OV19005059	OrgVI Motor vehicle collision	2019-04-24 9:36	Complete - solved (non-criminal) - CENTENNIAL RD and RIDDELL RD, ORANGEVILLE ON (Beat: O, ESZ: 81400) 4/24/2019 10:03:33 - Non-reportable / Event comments: 2 VEH / IN PARKING LOT FO TIMS NOW / GREEN PICK UP TRUCK AND 2001 ACURA BL
4)	OV19008028	OrgVI Motor vehicle collision	*****	Complete - solved (non-criminal) - CENTENNIAL RD and RIDDELL RD, ORANGEVILLE ON (Beat: O, ES2: 81400) 6/21/2019 20:00:17 - Reportable / Event comments: INADVERTENTLY CLOSED / / / Closing comments: VENASSE - SEE MVC REPORT /

2019 RIDDELL AND CENTENNIAL
Appendix B

TAC Speed Limit Assessment Forms

NUMBER OF INTERSECTIONS

WITH PRIVATE ACCESS DRIVEWAYS

NUMBER OF INTERCHANGES

ON-STREET PARKING

Number of interchanges along corridor

Left turn movements permitted

Right-in / Right-out only

E2

E3

F

Number of

Occurrences

0

0 Number of

Occurrences

0

N/A

0

0

0

Automated Speed Limit Guidelines FORM A - Automated Speed Limit Guidelines Spreadsheet

Version: 10-Apr-09

Nam	ne of Corridor:	Riddell Road		Length of Design S Expressway, Current Po (For informa Prevailing (85th Percer Policy: (Maximum P SK Score ver 2 ver 2 ver 2 ver 2 ver 1 ver 3 ium 6 ver 1 er of ences 12 12					
Segr	ment Evaluated:	Alder Street			to)	Montgomery Road		
Geo	graphic Region:	Orangeville, Ontario							
Roa	d Agency:	Town of Orangeville							
Roa	d Classification:	Arterial		Length	of Corrie	dor	r:	900	m
Urba	an / Rural:	Rural		Design Expressive	Speed:	(Re 39)	equired for Freeway,		km/h
Divio	ded / Undivided:	Undivided		Current (For inform	Posted S	Spe	ed:	70	km/h
Majo	or / Minor:	Major		Prevailii (85th Per	ng Speed); 1: • jnf/	ormation only)		km/h
# Thi Per Г	rough Lanes Direction	1 lane		Policy:	n Posted Si		:d)		
	e of Corridor: Riddell Road nent Evaluated: Alder Street graphic Region: Orangeville, Ontario d Agency: Town of Orangeville d Classification: Arterial in / Rural: Rural led / Undivided: Undivided ir / Minor: Major ough Lanes)irection: 1 lane GEOMETRY (Horizontal) GEOMETRY (Vertical) GEOMETRY (Vertical) AVERAGE LANE WIDTH ROADSIDE HAZARDS PEDESTRIAN EXPOSURE CYCLIST EXPOSURE CYCLIST EXPOSURE PAVEMENT SURFACE NUMBER OF INTERSECTIONS WITH PUBLIC ROADS STOP controlled intersection Signalized intersection Roundabout or traffic circle Crosswalk Active, at-grade railroad crossing	RISK	Score			-,			
A1	GEOMETR	Y (Horizontal)	Lower	2					
A2	GEOMET	RY (Vertical)	Lower	2					
A3	AVERAGE	LANE WIDTH	Lower	2				Total Disk Score	
в	ROADSID	E HAZARDS	Lower	1				29]
C1	PEDESTRIA	N EXPOSURE	Lower	3				L	4
C2	CYCLIST	EXPOSURE	Medium	6					
D	PAVEMEN	T SURFACE	Lower	1				Recommended Posted Speed Limit (km/h):	
	NUMBER OF II WITH PUB	NTERSECTIONS	Number of Occurrences]		As o	determined by road character	istics
	STOP	² controlled intersection	0						1
		Signalized intersection	2	10				00	
E1	Rou	Indabout or traffic circle	0	12				As determined by policy	-
		Crosswalk	0						
	Active, at-	-grade railroad crossing	0		ļ]
	Sidestreet S	TOP-controlled or lane	1		l		The recommend	led posted speed limit may be	

The recommended posted speed limit may be checked against the prevailing speeds of the roadway and the road's safety performance.

Comments:

Automated Speed Limit Guidelines FORM A - Automated Speed Limit Guidelines Spreadsheet

Segi	ment Evaluated:	Centennial Road/Sp	encer Avenue		to	Alder Street		
Geo	graphic Region:	Orangeville, Ontario						
Roa	d Agency:	Town of Orangeville						
Roa	d Classification:	Arterial		Length	of Corrid	or:	500	m
Urba	an / Rural:	Urban		Design	Speed: (F	Required for Freeway,	,	km/h
Divio	ded / Undivided:	Undivided		Current	Posted Sp	beed:	70	km/h
Majo	or / Minor:	Major		Prevaili	ng Speed:	<i>.</i>		km/h
# Th	rough Lanes	1 lane		(85th Per Policy:	centile - for i	nformation only)		
Per [Direction:		RISK	(Maximu	n Posted Sp	eed)		
A 1	GEOMETR	V (Horizontal)	Lower	2				
AI	GEOMETR	r (nonzontal)	Lowei	2				
A2	GEOMET	RY (Vertical)	Lower	2				
A3	AVERAGE I	LANE WIDTH	Lower	2			Total Risk Score:	
в	ROADSIDE	E HAZARDS	Lower	1			29]
C1	PEDESTRIA	N EXPOSURE	Lower	3				
C2	CYCLIST	EXPOSURE	Medium	6				
D	PAVEMEN	T SURFACE	Lower	1			Recommended Posted Speed Limit (km/h):	
	NUMBER OF II WITH PUB	NTERSECTIONS SLIC ROADS	Number of Occurrences			Å	As determined by road characte	ristics
	STOP	controlled intersection	0				00	
	:	Signalized intersection	2				80	
E1	Rour	ndabout or traffic circle	0	20			As determined by policy	_
		Crosswalk	0					
	Active, at-g	grade railroad crossing	0					
	Sidestreet S	TOP-controlled or lane	0			The recomn	nended posted speed limit may be	
E2	NUMBER OF I	NTERSECTIONS CESS DRIVEWAYS	Number of Occurrences	л		roadway an	ams, me prevaiing speeds of the date of th	
	Left turn	movements permitted	1	4	Com	nments:		
	F	Right-in / Right-out only	0					
E3	NUMBER OF I	NTERCHANGES	Number of Occurrences	0				
	Number of intere	changes along corridor	0					
F	ON-STREE	T PARKING	N/A	0				

Automated Speed Limit Guidelines FORM A - Automated Speed Limit Guidelines Spreadsheet

Nam	ne of Corridor:	Riddell Road							
Seg	ment Evaluated:	Richardson Road			to	o	Centennial Road/Sp	encer Avenue	
Geo	graphic Region:	Orangeville, Ontario							
Roa	d Agency:	Town of Orangeville							
Roa	d Classification:	Arterial		Length	of Corr	ido	r:	500	m
Urba	an / Rural:	Rural		Design	Speed:	(R	equired for Freeway,		km/h
Divid	ded / Undivided:	Undivided		Current	Posted S	Spe	ed:	70	km/h
Majo	or / Minor:	Major		Prevaili	ng Speed	d:			km/h
# Th	rough Lanes	1 lane		(85th Per Policy:	centile - fo	or inf	ormation only)		
PerL	Direction:		BIOK	(Maximur	n Posted S	Spee	ed)		
			RISK	Score					
A1	GEOMETR	Y (Horizontal)	Lower	2					
A2	GEOMET	RY (Vertical)	Lower	2					
A3	AVERAGE	LANE WIDTH	Lower	2				Total Risk Score:	
в	ROADSIDI	E HAZARDS	Lower	1				29	
C1	PEDESTRIA	N EXPOSURE	Lower	3					I
C2	CYCLIST	EXPOSURE	Medium	6					
D	PAVEMEN	T SURFACE	Lower	1				Recommended Posted	
	NUMBER OF I	NTERSECTIONS	Number of					Speed Limit (km/n):	
	WITH PUB	BLIC ROADS	Occurrences				As	determined by road characteri	stics
	STOP	controlled intersection	0					80	
E 1		Signalized intersection	2	20					
	Rou	ndabout or traffic circle	0	20				As determined by policy	l
		Crosswalk	0						
	Active, at-	grade railroad crossing	0						
	Sidestreet S	TOP-controlled or lane	0				The recommen	ded posted speed limit may be	
	NUMBER OF II WITH PRIVATE AC	NTERSECTIONS CCESS DRIVEWAYS	Number of Occurrences				checked agains roadway and th	at the prevailing speeds of the eroad's safety performance.	
E2	Left turn	movements permitted	4	15	Co	m	nents:		
	F	Right-in / Right-out only	0						
E3	NUMBER OF I	NTERCHANGES	Number of Occurrences	0					
	Number of inter	changes along corridor	0						
F	ON-STREE	T PARKING	N/A	0					
<u> </u>									

Automated Speed Limit Guidelines

				a opeca			oudon	
Nam	ne of Corridor:	Alder Street						
Seg	ment Evaluated:	B Line			to	Riddell Road		
Geo	graphic Region:	Orangeville, Ontario						
Roa	d Agency:	Orangeville, Ontario						
Roa	d Classification:	Collector		Length	of Corrid	or:		<mark>718</mark> m
Urba	an / Rural:	Urban		Design	NSpeed: (Required for Freev	way,	km/h
Divio	ded / Undivided:	Undivided		Current (For infor	Posted Sp mation only)	beed:		40 km/h
Majo	or / Minor:	Minor		Prevaili (85th Per	ng Speed:	information only)		km/h
# Thi Per [rough Lanes	1 lane		Policy:	m Posted Sr			
			RISK	Score				
		-		JCOIE	1			
A1	GEOMETR	Y (Horizontal)	Medium	2	-			
A2	GEOMET	RY (Vertical)	Lower	1				
A3	AVERAGE	LANE WIDTH	Medium	4				Total Risk Score:
в	ROADSIDI	E HAZARDS	Medium	2				52
C1	PEDESTRIA	N EXPOSURE	Lower	3				
C2	CYCLIST	EXPOSURE	Higher	9				
D	PAVEMEN	T SURFACE	Lower	1				Recommended Posted Speed Limit (km/h):
	NUMBER OF II		Number of				Ac d	atermined by road characteristics
	STOP	controlled intersection	1				73 U	
		Signalized intersection	1					40
E1	Rou	ndabout or traffic circle	0	14				As determined by policy
		Crosswalk	0					
	Active, at-	grade railroad crossing	0					
	Sidestreet S	TOP-controlled or lane	5			The reco	ommend	led posted speed limit may be
_	NUMBER OF II WITH PRIVATE AC	NTERSECTIONS CESS DRIVEWAYS	Number of Occurrences			checked roadway	against and the	: the prevailing speeds of the e road's safety performance.
E2	Left turn	movements permitted	14	10	Con	nments:		
	F	Right-in / Right-out only	0					
E3	NUMBER OF I	NTERCHANGES	Number of Occurrences	0				
	Number of inter	changes along corridor	0					
F	ON-STREE	T PARKING	Medium	6				

Automated Speed Limit Guidelines

			A Automato	u opecu			
Nam	ne of Corridor:	Alder Street					
Segi	ment Evaluated:	Riddell Road			to C Line		
Geo	graphic Region:	Orangeville, Ontario					
Roa	d Agency:	Orangeville, Ontario					
Roa	d Classification:	Collector		Length	of Corridor:	650	m
Urba	an / Rural:	Urban		Design	Speed: (Required for Freeway,		km/h
Divid	ded / Undivided:	Undivided		Current	Posted Speed:	40	km/h
Majo	or / Minor:	Minor		Prevaili	ng Speed:		km/h
# Th	rough Lanes	1 lane		(85th Per Policy:	centile - for information only)		
Per L	Direction:			(Maximur	n Posted Speed)		
			RISK	Score			
A1	GEOMETR	Y (Horizontal)	Medium	2			
A2	GEOMET	RY (Vertical)	Lower	1			
A3	AVERAGE	LANE WIDTH	Medium	4		Total Risk Score:	
в	ROADSIDI	E HAZARDS	Lower	1		43	
C1	PEDESTRIA	N EXPOSURE	Lower	3			
C2	CYCLIST	EXPOSURE	Medium	6			
D	PAVEMEN	T SURFACE	Lower	1		Recommended Posted Speed Limit (km/h):	
			Number of		A -		
	STOP	controlled intersection	Occurrences		AS		SUCS
		Signalized intersection	2			50	
E1	Rou	ndabout or traffic circle	0	14		As determined by policy	
		Crosswalk	0				
	Active, at-	grade railroad crossing	0				
	Sidestreet S	TOP-controlled or lane	4		The recommen	ded posted speed limit may be	
	NUMBER OF II WITH PRIVATE AC	NTERSECTIONS CCESS DRIVEWAYS	Number of Occurrences		checked agains roadway and th	st the prevailing speeds of the e road's safety performance.	
E2	Left turn	movements permitted	10	8	Comments:		
	F	Right-in / Right-out only	0				
E3	NUMBER OF I	NTERCHANGES	Number of Occurrences	0			
	Number of inter	changes along corridor	0				
F	ON-STREE		Lower	3			

Automated Speed Limit Guidelines FORM A - Automated Speed Limit Guidelines Spreadsheet

Nam	ne of Corridor:	Centennial Road					
Seg	ment Evaluated:	Riddell Road			to	C Line	
Geo	graphic Region:	Orangeville, Ontario					
Roa	d Agency:		Ito C Line Ontario Length of Corridor: Design Speed: (Required for Free Expressway, Highway) Current Posted Speed: (For information only) Prevailing Speed: (85th Percentile - for information only) Policy: (Maximum Posted Speed) RISK Score Lower 1 Lower 1 Lower 1 Lower 3 E Lower Higher 3 E Lower 1 Lower 1 Lower 1 Lower 1 Lower 1 Lower 1 1 NS Number of Occurrences section 2 14 The recorrection NS Number of Occurrences VAYS Number of Occurrences varsited 3				
Roa	d Classification:	Collector		Length	of Corrid	or:	500 m
Urba	an / Rural:	Urban		Design	Speed: (F	Required for Freeway	^{/,} km/h
Divi	ded / Undivided:	Undivided		Current	Posted Sp) beed:	50 km/h
Maio	or / Minor:	Minor		(For infor Prevailii	mation only) ng Speed:		km/h
# Th	rough Lanes	1 lane		(85th Per Policy:	centile - for in	nformation only)	
Per [Direction:		DIEK	(Maximur	n Posted Spe	A: (required for Preeway, way) km/h Speed: 50 hy) 50 ad: km/h Speed) 50 Speed) Km/h Speed) Total Risk Score: 33 33 Recommended Posted Speed Limit (km/h): As determined by road characteristics 60 As determined by policy	
			RISK	Score	1		
A1	GEOMETR	Y (Horizontal)	Lower	1			
A2	GEOMETI	RY (Vertical)	Lower	1			
A3	AVERAGE I	LANE WIDTH	Lower	2			Total Risk Score:
в	ROADSIDE	E HAZARDS	Higher	3			33
C1	PEDESTRIA	N EXPOSURE	Lower	3			
C2	CYCLIST	EXPOSURE	Lower	3			
D	PAVEMEN	T SURFACE	Lower	1			Recommended Posted Speed Limit (km/h):
	NUMBER OF I	NTERSECTIONS	Number of				Opecca <u>Linit</u> ().
	WITH PUB		Occurrences				As determined by road characteristics
	510P	Controlled Intersection	0				60
E1	Bou	ndahout or traffic circle	2	14			As determined by policy
	Nou	Crosswalk	0				As determined by policy
	Active. at-	grade railroad crossing	0				
	Sidestreet S	TOP-controlled or lane	0			The recomm	mended posted speed limit may be
	NUMBER OF I	NTERSECTIONS CESS DRIVEWAYS	Number of Occurrences			checked ag roadway an	jainst the prevailing speeds of the id the road's safety performance.
E2	Left turn	movements permitted	3	4	Com	nments:	
	F	Right-in / Right-out only	2				
E3	NUMBER OF I	NTERCHANGES	Number of Occurrences	0			
	Number of intere	changes along corridor	0				
F	ON-STREE		N/A	0			

Automated Speed Limit Guidelines FORM A - Automated Speed Limit Guidelines Spreadsheet

Nam	e of Corridor:	Spencer Avenue							
Segr	ment Evaluated:	Riddell Road			t	o B	uckingham Street	t	
Geo	graphic Region:	Orangeville, Ontario							
Road	d Agency:								
Road	d Classification:	Collector		Length	of Corr	ridor:		500	m
Urba	ın / Rural:	Urban		Design	Speed	: (Req	uired for Freeway,		km/h
Divic	led / Undivided:	Undivided		Current	Posted	spee	d:	40	km/h
Maic	or / Minor:	Major		Prevaili	ng Spee	ed:			km/h
# Thr	ough Lanes	1 Jane		(85th Per Policy:	centile - fo	or infoi	rmation only)		
Per D	Direction:		DIEK	(Maximu	m Posted	Speed	1)		
			RIJR	Score					
A1	GEOMETR	Y (Horizontal)	Medium	2					
A2	GEOMET	RY (Vertical)	Lower	1					
A3	AVERAGE	LANE WIDTH	Medium	4				Total Risk Score:	
в	ROADSIDI	E HAZARDS	Lower	1				44	
C1	PEDESTRIA	N EXPOSURE	Lower	3					_
C2	CYCLIST	EXPOSURE	Medium	6					
D	PAVEMEN	T SURFACE	Lower	1				Recommended Posted Speed Limit (km/h):	
	NUMBER OF II WITH PUB	NTERSECTIONS BLIC ROADS	Number of Occurrences				As	determined by road character	istics
	STOP	controlled intersection	0					50	
-4		Signalized intersection	1					50	
E1	Rou	ndabout or traffic circle	0	11				As determined by policy	_
		Crosswalk	0						
	Active, at-	grade railroad crossing	0						
	Sidestreet S	TOP-controlled or lane	4				The recomme	nded posted speed limit may be	
	NUMBER OF II	NTERSECTIONS CESS DRIVEWAYS	Number of Occurrences	45			checked agair roadway and t	nst the prevailing speeds of the he road's safety performance.	
E2	Left turr	n movements permitted	32	15	Co	omm	ents:		
	F	Right-in / Right-out only	0						
E3	NUMBER OF I	NTERCHANGES	Number of Occurrences	0					
	Number of inter	changes along corridor	0						
F	ON-STREE	T PARKING	N/A	0					

Appendix C

2020 Traffic Operations Reports

	٨	+	4	t	•	t	*	*	Ļ	4	
ane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	5	1.	*	1.	3		1	5	•	1	
Traffic Volume (vph)	14	155	124	56	23	278	135	97	477	14	
Future Volume (vph)	14	155	124	56	23	278	135	97	477	14	
Turn Tyne	Perm	NA	Perm	NA	Perm	NA	Perm	Perm	NA	Perm	
Protected Phases	1 Unit	6	1 Onn	2	1 Unit	4	1 Onn	1 Unit	8	1 Unit	
Permitted Phases	6	Ű	2	-	4		4	8	Ű	8	
Detector Phase	6	6	2	2	4	4	4	8	8	8	
Switch Phase											
Minimum Initial (s)	8.0	8.0	8.0	8.0	10.0	10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	31.0	31.0	31.0	31.0	36.0	36.0	36.0	36.0	36.0	36.0	
Total Split (s)	37.0	37.0	37.0	37.0	36.0	36.0	36.0	36.0	36.0	36.0	
Total Split (%)	50.7%	50.7%	50.7%	50.7%	49.3%	49.3%	49.3%	49.3%	49.3%	49.3%	
Yellow Time (s)	5.0	5.0	5.0	5.0	4.0	4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	7.0	7.0	7.0	7.0	6.0	6.0	6.0	6.0	6.0	6.0	
Lead/Lag											
Lead-Lag Optimize?											
Recall Mode	Max	Max	Max	Max	None	None	None	None	None	None	
Act Effct Green (s)	30.1	30.1	30.1	30.1	27.4	27.4	27.4	27.4	27.4	27.4	
Actuated g/C Ratio	0.43	0.43	0.43	0.43	0.39	0.39	0.39	0.39	0.39	0.39	
v/c Ratio	0.03	0.31	0.33	0.16	0.21	0.57	0.23	0.36	0.91	0.03	
Control Delay	13.1	14.5	17.0	9.3	18.7	21.2	3.5	18.9	40.7	0.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	13.1	14.5	17.0	9.3	18.7	21.2	3.5	18.9	40.7	0.1	
LOS	В	В	В	A	В	С	A	В	D	A	
Approach Delay		14.4		13.7		15.5			36.2		
Approach LOS		В		В		В			D		
Intersection Summary											
Cycle Length: 73											
Actuated Cycle Length: 70.	5										
Control Type: Semi Act-I Inc	noord										
Maximum v/c Ratio: 0.91											
Intersection Signal Delay: 2	3.5			Ir	ntersectio	n LOS [,] C					
Intersection Capacity Utiliza	tion 82 0%			10	CULEvel	of Service	₽ D				
Analysis Period (min) 15				K	2.5 20101	27 001 1100					
.,,											
Splits and Phases: 1: Rid	dell Road	& Alder S	treet			-					
+					-	a.					
⊤ v02 37 e					36 -	12/4					
4											
₩ Ø6					¥	Ø8					
					26.0						

2020 AM Peak Hour Queues 200195 - Orangeville Intersections 1: Riddell Road & Alder Street < + < ٠ t 1 ~ 1 -+ EBL EBT WBL WBT NBL NBT NBR SBL SBT SBR Lane Group 17 230 151 114 339 165 118 582 17 Lane Group Flow (vph) 28 v/c Ratio 0.03 0.31 0.33 0.16 0.21 0.57 0.23 0.36 0.91 0.03 Control Delay 13.1 14.5 17.0 9.3 18.7 21.2 3.5 18.9 40.7 0.1 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 13.1 14.5 17.0 9.3 18.7 21.2 18.9 40.7 0.1 3.5 Queue Length 50th (m) 1.4 20.0 14.4 5.8 2.5 35.8 0.0 11.3 73.9 0.0 Queue Length 95th (m) 4.5 31.9 25.4 13.4 7.6 52.9 8.0 21.5 #112.5 0.0 Internal Link Dist (m) 197.3 149.7 592.2 140.4 Turn Bay Length (m) 25.0 25.0 95.0 35.0 110.0 40.0 Base Capacity (vph) 554 731 460 733 147 653 769 356 704 658 Starvation Cap Reductn 0 0 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0 0 0 Reduced v/c Ratio 0.03 0.31 0.33 0.16 0.19 0.52 0.21 0.33 0.83 0.03 Intersection Summary

#Questhspercentilensetteredscapacity, queue may be longer.

01-11-2021 Paradigm (PN/JJ) Synchro 9 Report Page 2

01-11-2021 Paradigm (PN/JJ)

1: Riddell Road & A	Alder Sti	reet							200195	- Orange	ille Inters	sections
	≯	-	\mathbf{F}	4	+	•	•	Ť	۲	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ľ	¢Î		ľ	4Î		ľ	•	1	ľ	1	1
Traffic Volume (vph)	14	155	34	124	56	38	23	278	135	97	477	14
Future Volume (vph)	14	155	34	124	56	38	23	278	135	97	477	14
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	7.0	7.0		7.0	7.0		6.0	6.0	6.0	6.0	6.0	6.0
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Frpb, ped/bikes	1.00	0.98		1.00	1.00		1.00	1.00	1.00	1.00	1.00	0.98
Flpb, ped/bikes	1.00	1.00		0.94	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	0.97		1.00	0.94		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1805	1693		1671	1658		1582	1532	1583	1671	1652	1462
Flt Permitted	0.68	1.00		0.62	1.00		0.21	1.00	1.00	0.48	1.00	1.00
Satd. Flow (perm)	1299	1693		1082	1658		346	1532	1583	837	1652	1462
Peak-hour factor, PHF	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
Adi, Flow (vph)	17	189	41	151	68	46	28	339	165	118	582	17
RTOR Reduction (vph)	0	10	0	0	26	0	0	0	101	0	0	10
Lane Group Flow (vph)	17	220	0	151	88	0	28	339	64	118	582	7
Confl. Peds. (#/hr)			52	52			2					2
Heavy Vehicles (%)	0%	9%	0%	2%	2%	16%	14%	24%	2%	8%	15%	8%
Turn Type	Perm	NA		Perm	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases		6			2			4			8	-
Permitted Phases	6			2			4		4	8		8
Actuated Green, G (s)	30.1	30.1		30.1	30.1		27.4	27.4	27.4	27.4	27.4	27.4
Effective Green, a (s)	30.1	30.1		30.1	30.1		27.4	27.4	27.4	27.4	27.4	27.4
Actuated g/C Ratio	0.43	0.43		0.43	0.43		0.39	0.39	0.39	0.39	0.39	0.39
Clearance Time (s)	7.0	7.0		7.0	7.0		6.0	6.0	6.0	6.0	6.0	6.0
Vehicle Extension (s)	0.2	0.2		0.2	0.2		3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	554	722		461	707		134	595	615	325	642	568
v/s Ratio Prot	001	0.13			0.05			0.22	0.0	020	c0.35	000
v/s Ratio Perm	0.01			c0.14			0.08		0.04	0.14		0.00
v/c Ratio	0.03	0.30		0.33	0.12		0.21	0.57	0.10	0.36	0.91	0.01
Uniform Delay, d1	11.7	13.3		13.5	12.2		14.3	16.9	13.7	15.3	20.3	13.2
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	0.1	1.1		1.9	0.4		0.8	1.3	0.1	0.7	16.4	0.0
Delay (s)	11.8	14.4		15.3	12.6		15.1	18.2	13.8	16.0	36.8	13.2
Level of Service	В	В		В	В		В	B	В	В	D	В
Approach Delay (s)		14.2			14.2			16.7			32.8	_
Approach LOS		В			В			В			C	
Intersection Summary								_			-	
HCM 2000 Control Delay			22.5	н	CM 2000	l evel of	Service		C			
HCM 2000 Volume to Cana	city ratio		0.60		5141 2000	2010101	501 1100		0			
Actuated Cycle Length (s)	ony ratio		70.5	S	im of lost	time (s)			13.0			
Intersection Canacity Litiliza	tion		82.0%	10		of Service			10.0 D			
Analysis Period (min)			15		0 20001				J			
			10									

Synchro 9 Report Page 3

	٦	-	1	-	1	Ť	1	1	ŧ	1	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	5	ĥ	۲	ĥ	5	•	1	۲	•	1	
Fraffic Volume (vph)	58	150	111	78	50	258	74	157	437	6	
Future Volume (vph)	58	150	111	78	50	258	74	157	437	6	
Furn Type	Perm	NA	Perm	NA	Perm	NA	Perm	Perm	NA	Perm	
Protected Phases		8		4		6			2		
Permitted Phases	8		4		6		6	2		2	
Detector Phase	8	8	4	4	6	6	6	2	2	2	
Switch Phase											
Vinimum Initial (s)	15.0	15.0	15.0	15.0	8.0	8.0	8.0	8.0	8.0	8.0	
Vinimum Split (s)	31.0	31.0	31.0	31.0	44.0	44.0	44.0	44.0	44.0	44.0	
Fotal Split (s)	31.0	31.0	31.0	31.0	44.0	44.0	44.0	44.0	44.0	44.0	
Fotal Split (%)	41.3%	41.3%	41.3%	41.3%	58.7%	58.7%	58.7%	58.7%	58.7%	58.7%	
Yellow Time (s)	4.0	4.0	4.0	4.0	5.0	5.0	5.0	5.0	5.0	5.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Fotal Lost Time (s)	6.0	6.0	6.0	6.0	7.0	7.0	7.0	7.0	7.0	7.0	
Lead/Lag											
Lead-Lag Optimize?											
Recall Mode	None	None	None	None	Max	Max	Max	Max	Max	Max	
Act Effct Green (s)	15.9	15.9	15.9	15.9	37.0	37.0	37.0	37.0	37.0	37.0	
Actuated g/C Ratio	0.24	0.24	0.24	0.24	0.56	0.56	0.56	0.56	0.56	0.56	
//c Ratio	0.20	0.53	0.50	0.31	0.11	0.31	0.10	0.27	0.49	0.01	
Control Delay	21.8	22.9	30.0	15.3	7.9	9.2	2.5	9.4	11.4	0.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	21.8	22.9	30.0	15.3	7.9	9.2	2.5	9.4	11.4	0.0	
LOS	С	С	С	В	A	A	A	A	В	A	
Approach Delay		22.7		21.9		7.8			10.8		
Approach LOS		С		С		A			В		
ntersection Summary											
Cycle Length: 75											
Actuated Cycle Length: 68	5.9										
Natural Cycle: 75											
Control Type: Semi Act-U	ncoord										
Maximum v/c Ratio: 0.53											
ntersection Signal Delay:	14.1			Ir	ntersectio	1 LOS: B	_				
ntersection Capacity Utili	zation 86.4%	1		10	CU Level	of Service	θE				
Analysis Period (min) 15											
Splits and Phases: 2: R	iddell Road	& Spence	r Avenue	/Centenn	ial Road						
<u>.</u>						•	-				
♥ Ø2						21	Ø4				
*						51	4				
- Marc							-				

01-11-2021 Paradigm (PN/JJ)

Queues									20	20 AM	Peak Hou
2: Riddell Road & S	Spencer	Avenu	ie/Cer	ntennia	al Road	ł			200195	 Orangev 	Ile Intersection
	۶	-	4	+	•	Ť	*	*	ŧ	4	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Group Flow (vph)	60	239	114	139	52	266	76	162	451	6	
v/c Ratio	0.20	0.53	0.50	0.31	0.11	0.31	0.10	0.27	0.49	0.01	
Control Delay	21.8	22.9	30.0	15.3	7.9	9.2	2.5	9.4	11.4	0.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	21.8	22.9	30.0	15.3	7.9	9.2	2.5	9.4	11.4	0.0	
Queue Length 50th (m)	6.2	22.1	12.7	8.9	2.7	15.8	0.0	9.3	30.5	0.0	
Queue Length 95th (m)	15.1	42.0	27.3	22.0	8.4	33.4	5.4	22.6	60.8	0.0	
Internal Link Dist (m)		130.7		209.9		212.7			592.2		
Turn Bay Length (m)	50.0		40.0		105.0		60.0	165.0		160.0	
Base Capacity (vph)	472	686	361	667	488	847	759	593	912	687	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.13	0.35	0.32	0.21	0.11	0.31	0.10	0.27	0.49	0.01	
Intersection Summary											

2: Riddell Road & Spencer Avenue/Centennial Road 200195 - Orangeville Intersections ٦ ۰. 1 -∕⊷ \mathbf{r} Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBI SBT SBR Lane Configurations ٦ ħ ₽ Traffic Volume (vph) 58 150 81 111 78 57 50 258 74 157 437 6 Future Volume (vph) 58 150 81 111 78 57 50 258 74 157 437 6 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 6.0 Total Lost time (s) 6.0 6.0 6.0 7.0 7.0 7.0 7.0 7.0 7.0 Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Frpb, ped/bikes 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 Flpb, ped/bikes 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Frt 1.00 0.95 1.00 0.94 1.00 1.00 0.85 1.00 1.00 0.85 Flt Protected 0.95 1.00 0.95 1.00 0.95 1.00 1.00 0.95 1.00 1.00 Satd. Flow (prot) 1508 1770 1746 1661 1672 1768 1292 1687 1624 1188 Flt Permitted 0.67 1.00 0.55 1.00 0 47 1.00 1.00 0.60 1.00 1.00 Satd. Flow (perm) 1245 1746 955 1672 868 1508 1292 1057 1624 1188 Peak-hour factor. PHF 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 Adj. Flow (vph) 60 155 84 114 80 59 52 266 76 162 451 6 RTOR Reduction (vph) 30 40 0 33 0 0 0 0 0 0 0 3 Lane Group Flow (vph) 60 209 0 114 99 0 52 266 43 162 451 3 Confl. Peds. (#/hr) 2 2 1% 11% 2% 4% 8% 3% 2% 26% 25% 7% 17% 33% Heavy Vehicles (%) Turn Type NA NA NA Perm NA Perm Perm Perm Perm Perm Protected Phases 8 4 6 2 Permitted Phases 2 8 Δ 6 6 2 Actuated Green, G (s) 15.8 15.8 15.8 15.8 37.0 37.0 37.0 37.0 37.0 37.0 Effective Green, g (s) 15.8 15.8 15.8 15.8 37.0 37.0 37.0 37.0 37.0 37.0 Actuated g/C Ratio 0.24 0.24 0.24 0.24 0.56 0.56 0.56 0.56 0.56 0.56 Clearance Time (s) 6.0 6.0 6.0 6.0 7.0 7.0 7.0 7.0 7.0 7.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 298 229 488 594 Lane Grp Cap (vph) 419 401 847 726 913 668 v/s Ratio Prot c0.12 0.06 0.18 c0.28 v/s Ratio Perm 0.05 0.12 0.06 0.03 0.15 0.00 v/c Ratio 0.20 0.50 0.50 0.25 0.11 0.31 0.06 0.27 0.49 0.01 Uniform Delay, d1 20.0 21.6 21.6 20.2 6.7 7.7 6.5 7.4 8.7 6.3 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.3 0.9 1.7 0.3 0.4 1.0 0.2 1.9 0.0 1.1 23.3 Delay (s) 20.3 22.5 20.5 7.1 8.6 6.7 8.6 10.6 6.3 Level of Service С С С С В А Α А A Α Approach Delay (s) 22.1 21.8 8.1 10.1 Approach LOS С С А В Intersection Summary HCM 2000 Level of Service HCM 2000 Control Delay 13.7 В HCM 2000 Volume to Capacity ratio 0.50 13.0 Actuated Cycle Length (s) 65.8 Sum of lost time (s) 86.4% Intersection Capacity Utilization ICU Level of Service Е 15 Analysis Period (min) c Critical Lane Group

HCM Signalized Intersection Capacity Analysis

01-11-2021 Paradigm (PN/JJ) Synchro 9 Report Page 5 01-11-2021 Paradigm (PN/JJ) Synchro 9 Report Page 6

2020 AM Peak Hour

	۶	-	4	+	1	Ť	1	1	ţ	4	
ane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	1	eî	1	el el	۲ ۲	•	1	1	•	1	
Traffic Volume (vph)	16	58	129	98	75	588	181	35	369	27	
Future Volume (vph)	16	58	129	98	75	588	181	35	369	27	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	Perm	NA	Perm	
Protected Phases		6		2		4			8		
Permitted Phases	6		2		4		4	8		8	
Detector Phase	6	6	2	2	4	4	4	8	8	8	
Switch Phase											
Vinimum Initial (s)	8.0	8.0	8.0	8.0	10.0	10.0	10.0	10.0	10.0	10.0	
Vinimum Split (s)	31.0	31.0	31.0	31.0	36.0	36.0	36.0	36.0	36.0	36.0	
Total Split (s)	37.0	37.0	37.0	37.0	36.0	36.0	36.0	36.0	36.0	36.0	
Total Split (%)	50.7%	50.7%	50.7%	50.7%	49.3%	49.3%	49.3%	49.3%	49.3%	49.3%	
Yellow Time (s)	5.0	5.0	5.0	5.0	4.0	4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	7.0	7.0	7.0	7.0	6.0	6.0	6.0	6.0	6.0	6.0	
_ead/Lag											
Lead-Lag Optimize?											
Recall Mode	Max	Max	Max	Max	None	None	None	None	None	None	
Act Effct Green (s)	30.1	30.1	30.1	30.1	28.3	28.3	28.3	28.3	28.3	28.3	
Actuated g/C Ratio	0.42	0.42	0.42	0.42	0.40	0.40	0.40	0.40	0.40	0.40	
v/c Ratio	0.03	0.13	0.26	0.21	0.27	0.92	0.27	0.32	0.59	0.04	
Control Delay	13.2	9.9	15.8	11.0	17.2	41.0	6.0	23.5	20.9	1.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	13.2	9.9	15.8	11.0	17.2	41.0	6.0	23.5	20.9	1.4	
LOS	В	A	В	В	В	D	A	С	С	A	
Approach Delay		10.4		13.2		31.4			20.0		
Approach LOS		В		В		С			В		
ntersection Summary											
Cycle Length: 73											
Actuated Cycle Length: 71.4											
Natural Cycle: 70											
Control Type: Semi Act-Unco	oord										
Maximum v/c Ratio: 0.92											
Intersection Signal Delay: 24	.0			Ir	itersectio	n LOS: C					
Intersection Capacity Utilizat	ion 75.1%)		IC	CU Level	of Service	ЭD				
Analysis Period (min) 15											
Spins and Phases: 1: RI00	ieli rtoad i	a Alder S	IIEEL								
₩ø2					1	Ø4					
37 s					36 s						
					- \$	Ø8					
-					-						

01-11-2021	
Paradigm (PN/JJ	I)

Synchro 9 Report Page 1

	≯	-	1	+	1	1	1	1	Ŧ	1	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Group Flow (vph)	17	97	140	162	82	639	197	38	401	29	
v/c Ratio	0.03	0.13	0.26	0.21	0.27	0.92	0.27	0.32	0.59	0.04	
Control Delay	13.2	9.9	15.8	11.0	17.2	41.0	6.0	23.5	20.9	1.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	13.2	9.9	15.8	11.0	17.2	41.0	6.0	23.5	20.9	1.4	
Queue Length 50th (m)	1.4	5.4	12.9	10.5	7.5	82.6	5.0	3.6	43.0	0.0	
Queue Length 95th (m)	5.1	14.1	25.4	22.3	17.7	#146.3	17.1	12.0	69.9	1.9	
Internal Link Dist (m)		197.3		149.7		592.2			140.4		
Turn Bay Length (m)	25.0		25.0		95.0		35.0	110.0		40.0	
Base Capacity (vph)	522	768	544	768	326	740	760	126	726	699	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.03	0.13	0.26	0.21	0.25	0.86	0.26	0.30	0.55	0.04	

01-11-2021 Paradigm (PN/JJ)

1: Riddell Road & A	Alder Sti	reet							200195	- Orangev	ville Inters	sections
	٦	-	$\mathbf{\hat{z}}$	4	+	*	٠	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>۲</u>	4		ሻ	4Î		<u>۲</u>	↑	1	<u>۲</u>	↑	1
Traffic Volume (vph)	16	58	31	129	98	51	75	588	181	35	369	27
Future Volume (vph)	16	58	31	129	98	51	75	588	181	35	369	27
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	7.0	7.0		7.0	7.0		6.0	6.0	6.0	6.0	6.0	6.0
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Frpb, ped/bikes	1.00	0.99		1.00	1.00		1.00	1.00	1.00	1.00	1.00	0.98
Flpb, ped/bikes	1.00	1.00		0.99	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	0.95		1.00	0.95		1.00	1.00	0.85	1.00	1.00	0.85
Fit Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1805	1781		1771	1767		1803	1759	1615	1805	1727	1579
Flt Permitted	0.65	1.00		0.69	1.00		0.41	1.00	1.00	0.16	1.00	1.00
Satd. Flow (perm)	1243	1781		1294	1767		774	1759	1615	300	1727	1579
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	17	63	34	140	107	55	82	639	197	38	401	29
RTOR Reduction (vph)	0	20	0	0	25	0	0	0	84	0	0	18
Lane Group Flow (vph)	17	77	0	140	137	0	82	639	113	38	401	11
Confl. Peds. (#/hr)			7	7			2					2
Heavy Vehicles (%)	0%	0%	0%	1%	0%	6%	0%	8%	0%	0%	10%	0%
Turn Type	Perm	NA		Perm	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases		6			2			4			8	
Permitted Phases	6			2			4		4	8		8
Actuated Green, G (s)	30.1	30.1		30.1	30.1		28.3	28.3	28.3	28.3	28.3	28.3
Effective Green, g (s)	30.1	30.1		30.1	30.1		28.3	28.3	28.3	28.3	28.3	28.3
Actuated g/C Ratio	0.42	0.42		0.42	0.42		0.40	0.40	0.40	0.40	0.40	0.40
Clearance Time (s)	7.0	7.0		7.0	7.0		6.0	6.0	6.0	6.0	6.0	6.0
Vehicle Extension (s)	0.2	0.2		0.2	0.2		3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	524	750		545	744		306	697	640	118	684	625
v/s Ratio Prot		0.04			0.08			c0.36			0.23	
v/s Ratio Perm	0.01			c0.11			0.11		0.07	0.13		0.01
v/c Ratio	0.03	0.10		0.26	0.18		0.27	0.92	0.18	0.32	0.59	0.02
Uniform Delay, d1	12.1	12.5		13.4	13.0		14.6	20.4	14.0	14.9	16.9	13.1
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	0.1	0.3		1.1	0.5		0.5	16.8	0.1	1.6	1.3	0.0
Delay (s)	12.2	12.8		14.5	13.5		15.0	37.2	14.1	16.5	18.2	13.1
Level of Service	В	В		В	В		В	D	В	В	В	В
Approach Delay (s)		12.7			14.0			30.3			17.8	
Approach LOS		В			В			С			В	
Intersection Summary												
HCM 2000 Control Delay			23.2	H	CM 2000	Level of \$	Service		С			
HCM 2000 Volume to Capa	acity ratio		0.58									
Actuated Cycle Length (s)			71.4	Si	um of lost	time (s)			13.0			
Intersection Capacity Utiliza	ation		75.1%	IC	U Level o	of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

Synchro 9 Report Page 3

	≯	-	4	+	1	†	1	1	Ŧ	-	
ane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
ane Configurations	5	f,	<u> </u>	f,	5	1	1	<u> </u>	1	1	
Traffic Volume (vph)	48	117	153	183	150	556	128	87	266	19	
uture Volume (vph)	48	117	153	183	150	556	128	87	266	19	
Furn Type	Perm	NA	Perm	NA	Perm	NA	Perm	Perm	NA	Perm	
Protected Phases		8		4		6			2		
Permitted Phases	8		4		6		6	2		2	
Detector Phase	8	8	4	4	6	6	6	2	2	2	
Switch Phase											
/linimum Initial (s)	15.0	15.0	15.0	15.0	8.0	8.0	8.0	8.0	8.0	8.0	
/linimum Split (s)	31.0	31.0	31.0	31.0	44.0	44.0	44.0	44.0	44.0	44.0	
Total Split (s)	31.0	31.0	31.0	31.0	44.0	44.0	44.0	44.0	44.0	44.0	
Total Split (%)	41.3%	41.3%	41.3%	41.3%	58.7%	58.7%	58.7%	58.7%	58.7%	58.7%	
(ellow Time (s)	4.0	4.0	4.0	4.0	5.0	5.0	5.0	5.0	5.0	5.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	7.0	7.0	7.0	7.0	7.0	7.0	
ead/Lag											
ead-Lag Optimize?											
Recall Mode	None	None	None	None	Max	Max	Max	Мах	Мах	Мах	
Act Effct Green (s)	16.6	16.6	16.6	16.6	37.1	37.1	37.1	37.1	37.1	37.1	
Actuated g/C Ratio	0.25	0.25	0.25	0.25	0.56	0.56	0.56	0.56	0.56	0.56	
/c Ratio	0.20	0.35	0.55	0.55	0.25	0.68	0.17	0.25	0.30	0.03	
Control Delay	21.8	19.6	29.8	24.7	9.6	16.6	2.4	10.7	9.5	1.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	21.8	19.6	29.8	24.7	9.6	16.6	2.4	10.7	9.5	1.3	
.OS	С	В	С	С	А	В	А	В	А	А	
Approach Delay		20.1		26.7		13.2			9.4		
Approach LOS		С		С		В			А		
ntersection Summary											
Cycle Length: 75											
Actuated Cycle Length: 66.7											
Vatural Cycle: 75											
Control Type: Semi Act-Unco	ord										
Maximum v/c Ratio: 0.68											
ntersection Signal Delay: 16	.1			Ir	tersectio	n LOS: B					
ntersection Capacity Utilizati	on 83.3%			10	CU Level	of Service	ε				
Analysis Period (min) 15											
Splits and Phases: 2. Ridd	ell Road	& Spence	r Avenue	/Centenn	ial Road						
		~ 0p01100		Contorini		•					
3 N N							04				

01-11-2021 Paradigm (PN/JJ)

Queues									20	20 PM	Peak Hour
2: Riddell Road & S	Spencer	Avenu	le/Cer	ntennia	al Road	ł			200195	- Orangev	ille Intersections
	۶	+	4	ł	≺	1	1	*	ţ	~	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Group Flow (vph)	49	162	158	249	155	573	132	90	274	20	
v/c Ratio	0.20	0.35	0.55	0.55	0.25	0.68	0.17	0.25	0.30	0.03	
Control Delay	21.8	19.6	29.8	24.7	9.6	16.6	2.4	10.7	9.5	1.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	21.8	19.6	29.8	24.7	9.6	16.6	2.4	10.7	9.5	1.3	
Queue Length 50th (m)	5.1	14.6	17.9	25.4	8.8	45.3	0.0	5.1	16.1	0.0	
Queue Length 95th (m)	13.1	29.3	35.3	45.9	22.7	99.1	7.4	15.9	35.9	1.4	
Internal Link Dist (m)		130.7		209.9		212.7			592.2		
Turn Bay Length (m)	50.0		40.0		105.0		60.0	165.0		160.0	
Base Capacity (vph)	370	689	432	669	611	838	776	361	902	694	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.13	0.24	0.37	0.37	0.25	0.68	0.17	0.25	0.30	0.03	
Intersection Summary											

Lane Configurations	٦	4		٦	4Î		٦	1	1	٦	1	7
Traffic Volume (vph)	48	117	40	153	183	58	150	556	128	87	266	19
Future Volume (vph)	48	117	40	153	183	58	150	556	128	87	266	19
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0		6.0	6.0		7.0	7.0	7.0	7.0	7.0	7.0
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	0.96		1.00	0.96		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1770	1796		1671	1745		1770	1508	1292	1687	1624	1214
Flt Permitted	0.53	1.00		0.65	1.00		0.59	1.00	1.00	0.37	1.00	1.00
Satd. Flow (perm)	988	1796		1151	1745		1101	1508	1292	650	1624	1214
Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	49	121	41	158	189	60	155	573	132	90	274	20
RTOR Reduction (vph)	0	18	0	0	17	0	0	0	59	0	0	9
Lane Group Flow (vph)	49	144	0	158	232	0	155	573	73	90	274	11
Heavy Vehicles (%)	2%	1%	4%	8%	3%	11%	2%	26%	25%	7%	17%	33%
Turn Type	Perm	NA		Perm	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases		8			4			6			2	
Permitted Phases	8			4			6		6	2		2
Actuated Green, G (s)	16.6	16.6		16.6	16.6		37.1	37.1	37.1	37.1	37.1	37.1
Effective Green, g (s)	16.6	16.6		16.6	16.6		37.1	37.1	37.1	37.1	37.1	37.1
Actuated g/C Ratio	0.25	0.25		0.25	0.25		0.56	0.56	0.56	0.56	0.56	0.56
Clearance Time (s)	6.0	6.0		6.0	6.0		7.0	7.0	7.0	7.0	7.0	7.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	245	446		286	434		612	838	718	361	903	675
v/s Ratio Prot		0.08			0.13			c0.38			0.17	
v/s Ratio Perm	0.05			c0.14			0.14		0.06	0.14		0.01
v/c Ratio	0.20	0.32		0.55	0.53		0.25	0.68	0.10	0.25	0.30	0.02
Uniform Delay, d1	19.8	20.5		21.8	21.7		7.6	10.6	7.0	7.6	7.9	6.6
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	0.4	0.4		2.3	1.3		1.0	4.5	0.3	1.6	0.9	0.0
Delay (s)	20.2	20.9		24.1	23.0		8.6	15.1	7.2	9.3	8.8	6.7
Level of Service	С	С		С	С		Α	В	A	Α	А	Α
Approach Delay (s)		20.7			23.4			12.7			8.8	
Approach LOS		С			С			В			А	
Intersection Summary												
HCM 2000 Control Delav			15.2	H	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.64									
Actuated Cycle Length (s)			66.7	Si	um of lost	time (s)			13.0			
Intersection Capacity Utiliza	ation		83.3%	IC	U Level o	of Service)		E			
Analysis Period (min)			15									
c Critical Lane Group												

+ 4 4

EBR WBL WBT WBR NBL NBT

HCM Signalized Intersection Capacity Analysis 2: Riddell Road & Spencer Avenue/Centennial Road

EBL

Movement

 $\mathcal{I} \rightarrow \mathcal{F}$

EBT

1

01-11-2021 Paradigm (PN/JJ) Synchro 9 Report Page 5 01-11-2021 Paradigm (PN/JJ) Synchro 9 Report Page 6

2020 PM Peak Hour 200195 - Orangeville Intersections

┛

SBR

\$

1

NBR

ŧ

Appendix D

2031 Traffic Operations Reports

	٦	-	1	-	1	t	1	1	↓	-	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	۲	¢Î,	٦	eî 🕺	۲	1	1	۲	1	1	
Traffic Volume (vph)	17	193	154	70	28	345	168	120	592	17	
Future Volume (vph)	17	193	154	70	28	345	168	120	592	17	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	Perm	NA	Perm	
Protected Phases		6		2		4			8		
Permitted Phases	6		2		4		4	8		8	
Detector Phase	6	6	2	2	4	4	4	8	8	8	
Switch Phase											
Minimum Initial (s)	8.0	8.0	8.0	8.0	10.0	10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	31.0	31.0	31.0	31.0	36.0	36.0	36.0	36.0	36.0	36.0	
Total Split (s)	31.0	31.0	31.0	31.0	59.0	59.0	59.0	59.0	59.0	59.0	
Total Split (%)	34.4%	34.4%	34.4%	34.4%	65.6%	65.6%	65.6%	65.6%	65.6%	65.6%	
Yellow Time (s)	5.0	5.0	5.0	5.0	4.0	4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	7.0	7.0	7.0	7.0	6.0	6.0	6.0	6.0	6.0	6.0	
Lead/Lag											
Lead-Lag Optimize?											
Recall Mode	Max	Max	Max	Max	None	None	None	None	None	None	
Act Effct Green (s)	24.5	24.5	24.5	24.5	37.1	37.1	37.1	37.1	37.1	37.1	
Actuated g/C Ratio	0.33	0.33	0.33	0.33	0.50	0.50	0.50	0.50	0.50	0.50	
v/c Ratio	0.05	0.51	0.63	0.25	0.22	0.55	0.23	0.38	0.88	0.03	
Control Delay	22.6	26.3	36.7	18.1	13.4	15.5	2.0	14.0	29.8	0.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	22.6	26.3	36.7	18.1	13.4	15.5	2.0	14.0	29.8	0.7	
LOS	С	С	D	В	В	В	Α	В	С	А	
Approach Delay		26.0		28.6		11.2			26.5		
Approach LOS		С		С		В			С		
Intersection Summon											
Cuele Length: 00											
Lycie Length: 90											
Actuated Cycle Length. 74.9											
Natural Cycle. 70 Control Typo: Somi Act Lloop	ord										
Jontrol Type. Semi Act-Onco	oru										
viaximum v/c Ratio: 0.88	4					- 1 00: 0					
Intersection Signal Delay: 22.	. I on 90 70/			If	Itersectio	n LUS: C	. Г				
Intersection Capacity Utilizati	00 89.7%			I	JU Level	of Service	θE				
Analysis Penou (min) 15											
Solite and Phases 1. Didd	all Road l	& Alder 9	troot								
	on ryoau (
V 02			- Tø4								
31 s			59 s								
A			1								

Synchro 9 Report Page 1

	≯	-	1	+	1	1	1	1	۰ŧ	1	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Group Flow (vph)	21	287	188	144	34	421	205	146	722	21	
v/c Ratio	0.05	0.51	0.63	0.25	0.22	0.55	0.23	0.38	0.88	0.03	
Control Delay	22.6	26.3	36.7	18.1	13.4	15.5	2.0	14.0	29.8	0.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	22.6	26.3	36.7	18.1	13.4	15.5	2.0	14.0	29.8	0.7	
Queue Length 50th (m)	2.1	32.3	23.2	11.1	2.6	40.1	0.0	12.4	88.5	0.0	
Queue Length 95th (m)	8.0	63.2	#56.7	27.6	7.2	54.3	6.2	21.6	112.8	0.6	
Internal Link Dist (m)		197.3		149.7		592.2			140.4		
Turn Bay Length (m)	25.0		25.0		95.0		35.0	110.0		40.0	
Base Capacity (vph)	413	559	300	567	227	1106	1200	560	1193	1068	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.05	0.51	0.63	0.25	0.15	0.38	0.17	0.26	0.61	0.02	

01-11-2021 Paradigm (PN/JJ)

HCM Signalized In	tersectio	on Cap reet	acity A	Analysi	s				20 200195	31 AM	Peak	Hour
	•	→	$\mathbf{\hat{v}}$	∢	+	×	1	t	1	\	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	1.		5	î.		5	•	1	5	•	1
Traffic Volume (vph)	17	193	43	154	70	48	28	345	168	120	592	17
Future Volume (vph)	17	193	43	154	70	48	28	345	168	120	592	17
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	7.0	7.0		7.0	7.0		6.0	6.0	6.0	6.0	6.0	6.0
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Frpb, ped/bikes	1.00	0.98		1.00	1.00		1.00	1.00	1.00	1.00	1.00	0.98
Flpb, ped/bikes	1.00	1.00		0.95	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	0.97		1.00	0.94		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1805	1691		1679	1655		1582	1532	1583	1671	1652	1462
Flt Permitted	0.67	1.00		0.52	1.00		0.19	1.00	1.00	0.44	1.00	1.00
Satd. Flow (perm)	1264	1691		926	1655		316	1532	1583	775	1652	1462
Peak-hour factor, PHF	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
Adj. Flow (vph)	21	235	52	188	85	59	34	421	205	146	722	21
RTOR Reduction (vph)	0	8	0	0	26	0	0	0	103	0	0	11
Lane Group Flow (vph)	21	279	0	188	118	0	34	421	102	146	722	10
Confl. Peds. (#/hr)			52	52			2					2
Heavy Vehicles (%)	0%	9%	0%	2%	2%	16%	14%	24%	2%	8%	15%	8%
Turn Type	Perm	NA		Perm	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases		6			2			4			8	
Permitted Phases	6			2			4		4	8		8
Actuated Green, G (s)	24.5	24.5		24.5	24.5		37.1	37.1	37.1	37.1	37.1	37.1
Effective Green, g (s)	24.5	24.5		24.5	24.5		37.1	37.1	37.1	37.1	37.1	37.1
Actuated g/C Ratio	0.33	0.33		0.33	0.33		0.50	0.50	0.50	0.50	0.50	0.50
Clearance Time (s)	7.0	7.0		7.0	7.0		6.0	6.0	6.0	6.0	6.0	6.0
Vehicle Extension (s)	0.2	0.2		0.2	0.2		3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	415	555		304	543		157	761	787	385	821	727
v/s Ratio Prot		0.16			0.07			0.27			c0.44	
v/s Ratio Perm	0.02			c0.20			0.11		0.06	0.19		0.01
v/c Ratio	0.05	0.50		0.62	0.22		0.22	0.55	0.13	0.38	0.88	0.01
Uniform Delay, d1	17.1	20.1		21.1	18.1		10.6	13.0	10.1	11.6	16.8	9.5
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	0.2	3.2		9.1	0.9		0.7	0.9	0.1	0.6	10.6	0.0
Delay (s)	17.3	23.4		30.2	19.0		11.3	13.9	10.1	12.2	27.3	9.5
Level of Service	В	С		С	В		В	В	В	В	С	A
Approach Delay (s)		23.0			25.4			12.6			24.4	
Approach LOS		С			С			В			С	
Intersection Summary												
HCM 2000 Control Delay			20.8	H	CM 2000	Level of \$	Service		С			
HCM 2000 Volume to Capa	city ratio		0.78									
			74.0	0.	um of looi	time (c)			13.0			
Actuated Cycle Length (s)			74.0	31	111 01 105	unie (s)			10.0			
Actuated Cycle Length (s) Intersection Capacity Utiliza	ation		74.6 89.7%	IC	U Level	of Service			E			
Actuated Cycle Length (s) Intersection Capacity Utiliza Analysis Period (min)	ation		74.6 89.7% 15	IC	U Level	of Service			E			

Synchro 9 Report Page 3

	۶	-	4	+	1	1	1	1	Ŧ	-	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	ľ	4Î	٢	eţ	1	•	1	ľ	•	1	
Traffic Volume (vph)	72	186	138	97	62	321	92	195	543	8	
Future Volume (vph)	72	186	138	97	62	321	92	195	543	8	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	Perm	NA	Perm	
Protected Phases		8		4		6			2		
Permitted Phases	8		4		6		6	2		2	
Detector Phase	8	8	4	4	6	6	6	2	2	2	
Switch Phase											
Vinimum Initial (s)	15.0	15.0	15.0	15.0	8.0	8.0	8.0	8.0	8.0	8.0	
Vinimum Split (s)	31.0	31.0	31.0	31.0	44.0	44.0	44.0	44.0	44.0	44.0	
Total Split (s)	44.0	44.0	44.0	44.0	46.0	46.0	46.0	46.0	46.0	46.0	
Total Split (%)	48.9%	48.9%	48.9%	48.9%	51.1%	51.1%	51.1%	51.1%	51.1%	51.1%	
Yellow Time (s)	4.0	4.0	4.0	4.0	5.0	5.0	5.0	5.0	5.0	5.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	7.0	7.0	7.0	7.0	7.0	7.0	
Lead/Lag											
Lead-Lag Optimize?											
Recall Mode	None	None	None	None	Max	Max	Мах	Мах	Мах	Max	
Act Effct Green (s)	18.9	18.9	18.9	18.9	39.2	39.2	39.2	39.2	39.2	39.2	
Actuated g/C Ratio	0.27	0.27	0.27	0.27	0.55	0.55	0.55	0.55	0.55	0.55	
/c Ratio	0.23	0.68	0.81	0.36	0.17	0.40	0.13	0.37	0.63	0.01	
Control Delay	21.8	28.6	57.3	16.5	11.0	12.1	3.0	12.8	16.1	0.0	
Queue Delav	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	21.8	28.6	57.3	16.5	11.0	12.1	3.0	12.8	16.1	0.0	
LOS	C	C	E	В	В	В	A	В	В	A	
Approach Delay		27.4		34.9		10.2			15.0		
Approach LOS		С		С		В			В		
ntersection Summary											
Cycle Length: 90											
Actuated Cycle Length: 71.2											
Natural Cycle: 75											
Control Type: Semi Act-Uncr	ord										
Maximum v/c Ratio: 0.81											
Intersection Signal Delay: 19	6			Ir	tersectio	n LOS: B					
Intersection Canacity Litilizat	ion 85.4%			10		of Service	Ε				
Analysis Period (min) 15	011 00.47			K	JO LOVOI						
Calita and Dhassay Or Dida	all Dood	0 Casas		Contonn	al Deed						
opins and Phases. Z: RIOC		a Sperice	Avenue	Centenn		_					
▼ ⁻ Ø2					- I V	Ø4					

01-11-2021 Paradigm (PN/JJ)

Queues 2 [.] Riddell Road & S	Spencer	Aveni	Je/Cer	ntennia	l Road	4			20 200195	31 AM 5 - Orangvi	Peak Hour
	۶	-	4	+	1	1	۲	1	ţ	~	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Group Flow (vph)	74	339	142	173	64	331	95	201	560	8	
v/c Ratio	0.23	0.68	0.81	0.36	0.17	0.40	0.13	0.37	0.63	0.01	
Control Delay	21.8	28.6	57.3	16.5	11.0	12.1	3.0	12.8	16.1	0.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	21.8	28.6	57.3	16.5	11.0	12.1	3.0	12.8	16.1	0.0	
Queue Length 50th (m)	8.1	38.4	18.5	13.5	3.8	22.8	0.0	13.5	45.9	0.0	
Queue Length 95th (m)	17.8	52.9	#44.4	28.2	13.2	54.3	7.3	37.0	104.9	0.0	
Internal Link Dist (m)		130.7		209.9		212.7			592.2		
Turn Bay Length (m)	50.0		40.0		105.0		60.0	165.0		160.0	
Base Capacity (vph)	647	967	355	921	376	829	753	545	893	684	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.11	0.35	0.40	0.19	0.17	0.40	0.13	0.37	0.63	0.01	
Intersection Summary											
#Qu25thspercentilenexturinene	anseedsoce	paeity, qu	eue may	be longe	r.						

2: Riddell Road & S	Spencer	Aveni	ue/Cer	ntennia	is Il Roac	ł			200195	5 - Orang	/ille Inters	ections
	٠	-	\mathbf{i}	1	+	×	1	1	1	1	Ŧ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	ň	î.		5	î.		5	•	1	ň	•	7
Traffic Volume (vph)	72	186	101	138	97	71	62	321	92	195	543	8
Future Volume (vph)	72	186	101	138	97	71	62	321	92	195	543	8
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0		6.0	6.0		7.0	7.0	7.0	7.0	7.0	7.0
Lane Util, Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	0.95		1.00	0.94		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd, Flow (prot)	1770	1778		1671	1673		1770	1508	1292	1687	1624	1214
Flt Permitted	0.65	1.00		0.38	1.00		0.37	1.00	1.00	0.56	1.00	1.00
Satd. Flow (perm)	1207	1778		663	1673		686	1508	1292	991	1624	1214
Peak-hour factor PHF	0.97	0.79	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adi Flow (vnh)	74	235	104	142	100	73	64	331	95	201	560	8
RTOR Reduction (vph)	0	23	0	0	37	0	0	0	43	0	000	4
Lane Group Flow (vph)	74	316	0	142	136	0	64	331	52	201	560	4
Heavy Vehicles (%)	2%	1%	4%	8%	3%	11%	2%	26%	25%	7%	17%	33%
Turn Turn	Dorm	N/A	7/0	Dorm	570 NIA	1170	Dorm	2070	Dorm	Dorm	NIA	Dorm
Protected Phases	Feilli	8		Feilii	INA A		reilli	NA 6	Feilii	Feilii	2	Feili
Protected Phases	8	0		1	4		6	0	6	2	2	2
Actuated Green G (c)	18.0	18.0		18.0	18.0		30.2	30.2	30.2	30.2	30.2	30.2
Effective Green, G (S)	18.0	18.0		18.0	18.0		30.2	30.2	30.2	30.2	30.2	30.2
Actuated a/C Patia	0.07	0.3		0.27	0.27		0.55	0.55	0.55	0.55	0.55	0.55
Actualed g/C Ratio	0.27	0.27		0.27	0.27		0.55	0.55	0.55	0.55	0.55	0.55
Vehicle Extension (s)	2.0	2.0		2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0
	3.0	3.0		3.0	3.0		3.0	0.0	740	5.0	3.0	0.0
Lane Grp Cap (vpn)	320	4/2		1/0	444		3/8	0.00	/12	540	-0.24	005
V/S Ratio Prot	0.00	0.18		-0.04	0.08		0.00	0.22	0.04	0.00	CU.34	0.00
V/s Ratio Perm	0.06	0.07		CU.21	0.04		0.09	0.40	0.04	0.20	0.00	0.00
v/c Ratio	0.23	0.67		0.81	0.31		0.17	0.40	0.07	0.37	0.63	0.01
Uniform Delay, d1	20.4	23.3		24.4	20.9		7.9	9.2	7.5	9.0	10.9	1.2
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	0.4	3.7		23.0	0.4		1.0	1.4	0.2	1.9	3.3	0.0
Delay (s)	20.8	27.0		47.4	21.2		8.9	10.6	1.1	10.9	14.2	1.2
Level of Service	C	0		D	C		A	В	A	В	B	P
Approach Delay (s)		25.9			33.0			9.8			13.3	
Approach LOS		C			C			A			В	
Intersection Summary												
HCM 2000 Control Delay			18.2	H	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	city ratio		0.68									
Actuated Cycle Length (s)			71.1	Si	um of lost	time (s)			13.0			
Intersection Capacity Utiliza	ition		85.4%	IC	U Level o	of Service			E			
Analysis Period (min)			15									
c Critical Lane Group												

Synchro 9 Report Page 6

01-11-2021 Paradigm (PN/JJ)

ane Group EBL EBT WBL WBT NBL NBT NBR SBL SBT SBR ane Configurations 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1<	Lane Group EBL EBT WBL WBT NBL NBR SBL SBT SBR arae Configurations 1<		٦	-	1	-	1	1	1	1	Ŧ	1	
Lane Configurations 1 2 4 4 5 3 4 4 459 3.4 Traffic Volume (vph) 19 72 160 122 93 731 225 44 459 3.4 Turn Type Perm NA Perm NA Perm NA Perm NA Perm NA Perm NA Perm Perm NA Perm Protected Phases 6 2 4 8 8 Protected Phases 6 2 4 4 8 8 Detector Phase 6 6 2 2 4 4 8 8 8 Switch Phase 6 2 4 4 8 8 8 Switch Phase 6 2 4 4 8 8 8 Switch Phase 6 2 4 4 4 8 8 8 Switch Phase 6 2 4 4 4 8 8 8 Switch Phase 6 2 4 4 4 8 8 8 Switch Phase 7 10 10 10 10 10 10 10 10 10 10 10 10 10	Lane Configurations 1 1 1 1 1 2 9 3 731 225 44 459 34 Traffic Volume (vph) 19 72 160 122 93 731 225 44 459 34 Turn Type Perm NA Perm NA Perm NA Perm NA Perm NA Perm NA Perm Protected Phases 6 2 4 4 8 8 Permitted Phases 6 2 4 4 8 8 Permitted Phases 6 2 4 4 8 8 Switch Phase 6 6 2 2 4 4 8 8 8 Switch Phase 6 6 2 2 4 4 4 8 8 8 Switch Phase 6 6 2 2 4 4 4 8 8 8 Switch Phase 6 6 2 2 4 4 4 8 8 8 Switch Phase 6 6 2 2 4 4 4 0 8 8 8 Switch Phase 6 6 2 2 4 4 4 0 8 8 8 Switch Phase 6 6 2 2 2 4 4 4 0 8 8 8 Switch Phase 6 6 6 2 2 2 4 4 4 0 8 8 8 Switch Phase 6 6 6 2 2 2 4 4 4 0 8 8 8 Switch Phase 6 6 6 2 0 2 0 4 0 10.0 10.0 10.0 10.0 10.0 10.0 Itiminum Initial (s) 8.0 8.0 8.0 8.0 10.0 10.0 10.0 10.0 10.	Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Traffic Volume (vph) 19 72 160 122 93 731 225 44 459 34 Future Volume (vph) 19 72 160 122 93 731 225 44 459 34 Future Volume (vph) 19 72 160 122 93 731 225 44 459 34 Promited Phases 6 2 4 4 8 8 8 Permited Phases 6 2 4 4 8 8 8 Detector Phase 6 2 2 4 4 8 8 8 Switch Phase 6 2 2 4 4 8 8 8 Otal Split (s) 31.0 31.0 31.0 31.0 36.0 36.0 36.0 36.0 10.0 1	Traffic Volume (vph) 19 72 160 122 93 731 225 44 459 34 Future Volume (vph) 19 72 160 122 93 731 225 44 459 34 Trun Type Perm NA Perm NA Perm NA Perm Perm NA Perm Protected Phases 6 2 4 4 8 8 Permitted Phases 6 2 4 4 8 8 Solution Phase 6 6 2 4 4 8 8 Solution Phase 6 6 2 2 4 4 8 8 Solution Phase 6 6 2 2 4 4 8 8 8 Solution Phase 7 Total Split (s) 31.0 31.0 31.0 31.0 36.0 36.0 36.0 36.0 36.0 36.0 36.0 36	Lane Configurations	ľ	ĥ	ľ	ĥ	ľ	•	1	ľ	1	1	
Future Volume (vph) 19 72 160 122 93 731 225 44 459 34 Tum Type Perm NA NA NA NA NA NA NA NA MA MA MA MA MA MA MA MA MA	Future Volume (vph) 19 72 160 122 93 731 225 44 459 34 Tum Type Perm NA NA No No </td <td>Traffic Volume (vph)</td> <td>19</td> <td>72</td> <td>160</td> <td>122</td> <td>93</td> <td>731</td> <td>225</td> <td>44</td> <td>459</td> <td>34</td> <td></td>	Traffic Volume (vph)	19	72	160	122	93	731	225	44	459	34	
Turn Type Perm NA Perm Perm Perm NA Perm Perm NA Perm Perm NA Perm Perm <td>Turn Type Perm NA Perm Perm NA Perm Perm NA Perm Perm Perm NA Perm Perm<!--</td--><td>Future Volume (vph)</td><td>19</td><td>72</td><td>160</td><td>122</td><td>93</td><td>731</td><td>225</td><td>44</td><td>459</td><td>34</td><td></td></td>	Turn Type Perm NA Perm Perm NA Perm Perm NA Perm Perm Perm NA Perm Perm </td <td>Future Volume (vph)</td> <td>19</td> <td>72</td> <td>160</td> <td>122</td> <td>93</td> <td>731</td> <td>225</td> <td>44</td> <td>459</td> <td>34</td> <td></td>	Future Volume (vph)	19	72	160	122	93	731	225	44	459	34	
Protected Phases 6 2 4 8 Permitted Phases 6 2 4 4 8 8 Detector Phase 6 6 2 2 4 4 8 8 Switch Phase 6 6 2 2 4 4 8 8 Switch Phase 8 8 8 8 8 Minimum Initial (s) 8.0 8.0 8.0 10.0	Protected Phases 6 2 4 8 8 Permitted Phases 6 2 4 4 8 Permitted Phases 6 2 4 4 8 8 Permitted Phase 6 6 2 2 4 4 8 8 Switch Phase 6 6 2 2 4 4 8 8 Switch Phase 6 6 6 2 2 4 4 8 8 8 Switch Phase 6 6 6 2 2 4 4 8 8 8 Switch Phase 7 Switch	Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	Perm	NA	Perm	
Permitted Phases 6 2 4 4 8 8 Detector Phase 6 6 2 2 4 4 4 8 8 Switch Phase Minimum Initial (s) 8.0 8.0 8.0 10.0	Permitted Phases 6 2 4 4 4 8 8 8 Detector Phase 6 6 2 2 4 4 4 8 8 8 Detector Phase 6 6 2 2 4 4 4 8 8 8 Switch Phase Winimum Initial (s) 8.0 8.0 8.0 8.0 10.0 10.0 10.0 10.0 10.	Protected Phases		6		2		4			8		
Detector Phase 6 6 2 2 4 4 4 8 8 Switch Phase Minimum Spit (s) 8.0 8.0 8.0 10	Detector Phase 6 6 2 2 4 4 4 8 8 8 Switch Phase Minimum Site (s) 8.0 8.0 8.0 10.0 10.0 10.0 10.0 10.0 Minimum Split (s) 31.0 31.0 31.0 31.0 31.0 36.0	Permitted Phases	6		2		4		4	8		8	
Switch Phase Minimum Initial (s) 8.0 8.0 8.0 10.0	Switch Phase Winimum Initial (s) 8.0 8.0 8.0 10.0 10.0 10.0 10.0 10.0 10.0 Winimum Spit (s) 31.0 31.0 31.0 31.0 31.0 36.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0<	Detector Phase	6	6	2	2	4	4	4	8	8	8	
Minimum Initial (s) 8.0 8.0 8.0 10.0 10.0 10.0 10.0 10.0 10.0 Minimum Split (s) 31.0 31.0 31.0 31.0 31.0 36.0	Minimum Initial (s) 8.0 8.0 8.0 10.0 10.0 10.0 10.0 10.0 10.0 Minimum Split (s) 31.0 31.0 31.0 31.0 36.0	Switch Phase											
Minimum Split (s) 31.0 31.0 31.0 31.0 31.0 36	Minimum Split (s) 31.0 31.0 31.0 31.0 31.0 31.0 36	Minimum Initial (s)	8.0	8.0	8.0	8.0	10.0	10.0	10.0	10.0	10.0	10.0	
Total Split (s) 31.0 31.0 31.0 31.0 31.0 59.0	Total Split (s) 31.0 31.0 31.0 31.0 31.0 59.0 59.0 59.0 59.0 59.0 59.0 Total Split (%) 34.4% 34.4% 34.4% 65.6%	Minimum Split (s)	31.0	31.0	31.0	31.0	36.0	36.0	36.0	36.0	36.0	36.0	
Total Spiit (%) 34.4% 34.4% 34.4% 34.4% 65.6%	Total Spiit (%) 34.4% 34.4% 34.4% 34.4% 65.6%	Total Split (s)	31.0	31.0	31.0	31.0	59.0	59.0	59.0	59.0	59.0	59.0	
Yellow Time (s) 5.0 5.0 5.0 5.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	Yellow Time (s) 5.0 5.0 5.0 5.0 5.0 5.0 4.0 4.0 4.0 4.0 4.0 All-Red Time (s) 2.0	Total Split (%)	34.4%	34.4%	34.4%	34.4%	65.6%	65.6%	65.6%	65.6%	65.6%	65.6%	
Ail-Red Time (s) 2.0 0.0 <td>Ail-Red Time (s) 2.0<td>Yellow Time (s)</td><td>5.0</td><td>5.0</td><td>5.0</td><td>5.0</td><td>4.0</td><td>4.0</td><td>4.0</td><td>4.0</td><td>4.0</td><td>4.0</td><td></td></td>	Ail-Red Time (s) 2.0 <td>Yellow Time (s)</td> <td>5.0</td> <td>5.0</td> <td>5.0</td> <td>5.0</td> <td>4.0</td> <td>4.0</td> <td>4.0</td> <td>4.0</td> <td>4.0</td> <td>4.0</td> <td></td>	Yellow Time (s)	5.0	5.0	5.0	5.0	4.0	4.0	4.0	4.0	4.0	4.0	
Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Total Lost Time (s) 7.0 7.0 7.0 7.0 6.0<	Total Lost Time (s) 7.0 7.0 7.0 7.0 6.0	Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Lead/Lag Optimize? Recall Mode Max Max Max None None None None None Act Effct Green (s) 24.5 24.5 24.5 24.5 39.0 39.0 39.0 39.0 39.0 Actuated g/C Ratio 0.32 0.32 0.32 0.32 0.51 0.51 0.51 0.51 0.51 Queue Delay 20.4 19.9 12.1 29.6 4.2 18.1 15.2 2.0 Queue Delay 0.0 0	Lead/Lag Opimize? Recall Mode Max Max Max None None None None None Actualed g/C Ratio 0.32 0.32 0.32 0.32 0.51 0.52 0.62 0.62 0.62 0.62 0.62 0.62 6	Total Lost Time (s)	7.0	7.0	7.0	7.0	6.0	6.0	6.0	6.0	6.0	6.0	
Lead-Lag Optimize? Recall Mode Max Max Max None None <t< td=""><td>Lead-Lag Optimize? Recall Mode Max Max Max None None</td><td>Lead/Lag</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Lead-Lag Optimize? Recall Mode Max Max Max None	Lead/Lag											
Recall Mode Max Max Max Max Max None Add Effect Green (s) 24.5 24.5 24.5 24.5 39.0 39.0 39.0 39.0 39.0 Actuated g/C Ratio 0.32 0.32 0.32 0.32 0.51	Recall Mode Max Max Max Max Max None <	Lead-Lag Optimize?											
Act Effct Green (s) 24.5 24.5 24.5 24.5 39.0	Act Effct Green (s) 24.5 24.5 24.5 24.5 39.0	Recall Mode	Max	Max	Max	Max	None	None	None	None	None	None	
Actuated g/C Ratio 0.32 0.32 0.32 0.32 0.32 0.51 <td>Actuated g/C Ratio 0.32 0.32 0.32 0.32 0.51 0</td> <td>Act Effct Green (s)</td> <td>24.5</td> <td>24.5</td> <td>24.5</td> <td>24.5</td> <td>39.0</td> <td>39.0</td> <td>39.0</td> <td>39.0</td> <td>39.0</td> <td>39.0</td> <td></td>	Actuated g/C Ratio 0.32 0.32 0.32 0.32 0.51 0	Act Effct Green (s)	24.5	24.5	24.5	24.5	39.0	39.0	39.0	39.0	39.0	39.0	
v/c Ratio 0.05 0.20 0.43 0.35 0.28 0.89 0.27 0.35 0.57 0.04 Control Delay 23.4 18.9 28.1 21.9 12.1 29.6 4.2 18.1 15.2 2.0 Queue Delay 0.0 <	v/c Ratio 0.05 0.20 0.43 0.35 0.28 0.89 0.27 0.35 0.57 0.04 Control Delay 23.4 18.9 28.1 21.9 12.1 29.6 4.2 18.1 15.2 2.0 Queue Delay 0.0 <	Actuated g/C Ratio	0.32	0.32	0.32	0.32	0.51	0.51	0.51	0.51	0.51	0.51	
Control Delay 23.4 18.9 28.1 21.9 12.1 29.6 4.2 18.1 15.2 2.0 Queue Delay 0.0	Control Delay 23.4 18.9 28.1 21.9 12.1 29.6 4.2 18.1 15.2 2.0 Queue Delay 0.0<	/c Ratio	0.05	0.20	0.43	0.35	0.28	0.89	0.27	0.35	0.57	0.04	
Queue Delay 0.0 <th< td=""><td>Queue Delay 0.0 <th< td=""><td>Control Delay</td><td>23.4</td><td>18.9</td><td>28.1</td><td>21.9</td><td>12.1</td><td>29.6</td><td>4.2</td><td>18.1</td><td>15.2</td><td>2.0</td><td></td></th<></td></th<>	Queue Delay 0.0 <th< td=""><td>Control Delay</td><td>23.4</td><td>18.9</td><td>28.1</td><td>21.9</td><td>12.1</td><td>29.6</td><td>4.2</td><td>18.1</td><td>15.2</td><td>2.0</td><td></td></th<>	Control Delay	23.4	18.9	28.1	21.9	12.1	29.6	4.2	18.1	15.2	2.0	
Total Delay 23.4 18.9 28.1 21.9 12.1 29.6 4.2 18.1 15.2 2.0 LOS C B C C B C A B B A Approach Delay 19.6 24.8 22.6 14.6 A Approach LOS B C C B Image: C B Image: C B Image: C C Image: C B Image: C C Image: C Image: C C Image: C Image: C C Image: C Imag	Control Delay 23.4 18.9 28.1 21.9 12.1 29.6 4.2 18.1 15.2 2.0 LOS C B C C B C A B B A Approach Delay 19.6 24.8 22.6 14.6 A <td< td=""><td>Queue Delay</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td></td></td<>	Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Los C B C C B C C B A Approach Delay 19.6 24.8 22.6 14.6 Approach LOS B C C B Image: Comparison of the comparison o	Los C B C B C B C A B B A Approach Delay 19.6 24.8 22.6 14.6 Approach LOS B C C B C A B B A Intersection Summary Cycle Length: 90 Actuated Cycle Length: 76.7 Vatural Cycle: 75 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.89 Intersection LOS: C Intersection LOS: C Intersection Cos: C Intersection Maximum v/c Ratio: 0.89 Intersection Signal Delay: 20.7 Intersection LOS: C Intersection Cos: C Intersection Signal Delay: 20.7 Intersection Signal Delay: 20.7 Intersection LOS: C Intersection Service E Analysis Period (min) 15	Total Delay	23.4	18.9	28.1	21.9	12.1	29.6	4.2	18.1	15.2	2.0	
Approach Delay 19.6 24.8 22.6 14.6 Approach LOS B C C B Intersection Summary Cycle Length: 90 Actuated Cycle Length: 76.7 Natural Cycle: 75 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.89 Intersection Signal Delay: 20.7 Intersection LOS: C Intersection Capacity Utilization 82.6% Intersection Cost of Service E	Aproach Delay 19.6 24.8 22.6 14.6 Approach LOS B C C B Intersection Summary Cycle Length: 90 Actuated Cycle Length: 76.7 Natural Cycle: 75 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.89 Intersection Cos: C Intersection LOS: C Intersection Cos: C Intersection Cos: C Intersection Cos: C Solits and Phases: 1: Riddell Road & Alder Street	OS	C	B	C	C	B	C	Α	B	B		
Approach LOS B C C B Intersection Summary Cycle Length: 90 Actuated Cycle Length: 76.7 Vatural Cycle: 75 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.89 Intersection Signal Delay: 20.7 Intersection LOS: C Intersection Copacity Utilization 82.6% ICU Level of Service E Approximation (vini) 15	Approach LOS B C C B Intersection Summary Cycle Length: 90 Actuated Cycle Length: 76.7 Natural Cycle: 75 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.89 Intersection Signal Delay: 20.7 Intersection LOS: C Intersection Capacity Utilization 82.6% ICU Level of Service E Analysis Period (min) 15 Solits and Phases: 1: Riddell Road & Alder Street	Approach Delay	Ũ	19.6	Ű	24.8	-	22.6		-	14.6		
Intersection Summary Intersection Summary Actuated Cycle Length: 76.7 Vatural Cycle: 75 Control Type: Semi Act-Uncoord Waximum v/c Ratio: 0.89 Intersection Signal Delay: 20.7 Intersection LOS: C Intersection Capacity Utilization 82.6% ICU Level of Service E Acause Entersection Cost E	Intersection Summary Cycle Length: 90 Actuated Cycle Length: 76.7 Natural Cycle 2: 75 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.89 Intersection LOS: C Intersection LOS: C Intersection Capacity Utilization 82.6% ICU Level of Service E Analysis Period (min) 15 Solits and Phases: 1: Riddell Road & Alder Street	Approach LOS		B		C.		C			B		
Intersection Summary Cycle Length: 90 Actuated Cycle Length: 76.7 Vatural Cycle: 75 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.89 Intersection Signal Delay: 20.7 Intersection LOS: C Intersection Grapacity Utilization 82.6% ICU Level of Service E Database Derived (rain) 15	Intersection Summary Cycle Length: 90 Cycle Length: 76.7 Vatural Cycle: 75 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.89 Intersection Signal Delay: 20.7 Intersection LOS: C Intersection dynatification 82.6% ICU Level of Service E Analysis Period (min) 15 Splits and Phases:			5		Ŭ		Ũ			5		
Cycle Length: 90 Actuated Cycle Length: 76.7 Vatural Cycle: 75 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.89 ntersection Signal Delay: 20.7 Intersection LOS: C ntersection Capacity Utilization 82.6% ICU Level of Service E Database Derived (vin) 15	Cycle Length: 90 Actuated Cycle Length: 76.7 Vatural Cycle: 75 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.89 Intersection Signal Delay: 20.7 Intersection Capacity Utilization 82.6% ICU Level of Service E Analysis Period (min) 15 Solits and Phases:	ntersection Summary											
Actuated Cycle Length: 76.7 Natural Cycle: 75 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.89 Intersection Signal Delay: 20.7 Intersection LOS: C Intersection Capacity Utilization 82.6% ICU Level of Service E Academic Paratic (nin) 15	Actuated Cycle Length: 76.7 Natural Cycle: 75 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.89 Intersection Signal Delay: 20.7 Intersection LOS: C Intersection Capacity Utilization 82.6% ICU Level of Service E Analysis Period (min) 15 Solits and Phases: 1: Riddell Road & Alder Street	Cycle Length: 90											
Vatural Cycle: 75 Control Type: Semi Act-Uncoord Waximum v/c Ratio: 0.89 Intersection Signal Delay: 20.7 Intersection LOS: C Intersection Capacity Utilization 82.6% ICU Level of Service E Opageise Derived (raip) 15	Natural Cycle: 75 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.89 Intersection Signal Delay: 20.7 Intersection LOS: C Intersection Capacity Utilization 82.6% ICU Level of Service E Analysis Period (min) 15 Solits and Phases: 1: Riddell Road & Alder Street	Actuated Cycle Length: 76.7											
Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.89 Intersection Signal Delay: 20.7 Intersection LOS: C Intersection Capacity Utilization 82.6% ICU Level of Service E Acalwsie Revind (min) 15	Control Type: Semi Act-Uncoord Maximum v/c Ratic: 0.89 Intersection LOS: C Intersection Capacity Utilization 82.6% ICU Level of Service E Analysis Period (min) 15 Solits and Phases: 1: Riddell Road & Alder Street	Natural Cycle: 75											
Maximum v/c Ratio: 0.89 Intersection Signal Delay: 20.7 Intersection LOS: C Intersection Capacity Utilization 82.6% ICU Level of Service E ICU Level of Service	Maximum v/c Ratio: 0.89 Intersection Signal Delay: 20.7 Intersection LOS: C Intersection Capacity Utilization 82.6% ICU Level of Service E Analysis Period (min) 15 Solits and Phases: 1: Riddell Road & Alder Street	Control Type: Semi Act-Unco	ord										
Intersection Signal Delay: 20.7 Intersection LOS: C Intersection Capacity Utilization 82.6% ICU Level of Service E	Intersection Signal Delay: 20.7 Intersection LOS: C Intersection Capacity Utilization 82.6% ICU Level of Service E Analysis Period (min) 15 Solits and Phases: 1: Riddell Road & Alder Street	Maximum v/c Ratio: 0.89											
Intersection Capacity Utilization 82.6% ICU Level of Service E	Intersection Capacity Utilization 82.6% ICU Level of Service E Analysis Period (min) 15 Solits and Phases: 1: Riddell Road & Alder Street	Intersection Signal Delay: 20.	7			lr	ntersectio	n LOS: C					
Analysis Pariod (min) 15	Analysis Period (min) 15 Solits and Phases: 1: Riddell Road & Alder Street	Intersection Capacity Utilization	on 82.6%			IC	CU Level	of Service	эE				
	Solits and Phases: 1: Riddell Road & Alder Street	Analysis Period (min) 15											
		·/			- T								

01-11-2021
Paradigm (PN/JJ)

Synchro 9 Report Page 1

Queues <u>1: Riddell Road & A</u>	Alder St	reet							20 200195	31 PM - Orangevi	Peak Hou Ile Intersection
	≯	→	4	Ļ	•	Ť	1	1	ŧ	1	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Group Flow (vph)	21	120	174	201	101	795	245	48	499	37	
v/c Ratio	0.05	0.20	0.43	0.35	0.28	0.89	0.27	0.35	0.57	0.04	
Control Delay	23.4	18.9	28.1	21.9	12.1	29.6	4.2	18.1	15.2	2.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	23.4	18.9	28.1	21.9	12.1	29.6	4.2	18.1	15.2	2.0	
Queue Length 50th (m)	2.2	10.0	21.1	20.1	8.1	100.1	6.1	4.0	48.4	0.0	
Queue Length 95th (m)	8.7	27.1	47.9	45.9	17.2	152.4	16.3	12.3	73.3	3.0	
Internal Link Dist (m)		197.3		149.7		592.2			140.4		
Turn Bay Length (m)	25.0		25.0		95.0		35.0	110.0		40.0	
Base Capacity (vph)	383	587	403	582	503	1239	1185	193	1216	1126	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.05	0.20	0.43	0.35	0.20	0.64	0.21	0.25	0.41	0.03	
Intersection Summary											

01-11-2021 Paradigm (PN/JJ)

	Aluel Sti	eel							200100	orungor		
	۶	-	$\mathbf{\hat{v}}$	1	+	•	٩.	1	1	1	ŧ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>۲</u>	4		<u>۲</u>	4Î		٦.	↑	1	٦	↑	1
Traffic Volume (vph)	19	72	39	160	122	63	93	731	225	44	459	34
Future Volume (vph)	19	72	39	160	122	63	93	731	225	44	459	34
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	7.0	7.0		7.0	7.0		6.0	6.0	6.0	6.0	6.0	6.0
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Frpb, ped/bikes	1.00	0.99		1.00	1.00		1.00	1.00	1.00	1.00	1.00	0.98
Flpb, ped/bikes	1.00	1.00		0.99	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	0.95		1.00	0.95		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1805	1781		1770	1768		1803	1759	1615	1805	1727	1579
Flt Permitted	0.63	1.00		0.68	1.00		0.38	1.00	1.00	0.14	1.00	1.00
Satd. Flow (perm)	1200	1781		1267	1768		716	1759	1615	273	1727	1579
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	21	78	42	174	133	68	101	795	245	48	499	37
RTOR Reduction (vph)	0	20	0	0	19	0	0	0	79	0	0	18
Lane Group Flow (vph)	21	100	0	174	182	0	101	795	166	48	499	19
Confl. Peds. (#/hr)			7	7			2					2
Heavy Vehicles (%)	0%	0%	0%	1%	0%	6%	0%	8%	0%	0%	10%	0%
Turn Type	Perm	NA		Perm	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases		6			2			4			8	
Permitted Phases	6			2			4		4	8		8
Actuated Green, G (s)	24.5	24.5		24.5	24.5		39.0	39.0	39.0	39.0	39.0	39.0
Effective Green, g (s)	24.5	24.5		24.5	24.5		39.0	39.0	39.0	39.0	39.0	39.0
Actuated g/C Ratio	0.32	0.32		0.32	0.32		0.51	0.51	0.51	0.51	0.51	0.51
Clearance Time (s)	7.0	7.0		7.0	7.0		6.0	6.0	6.0	6.0	6.0	6.0
Vehicle Extension (s)	0.2	0.2		0.2	0.2		3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	384	570		405	566		365	896	823	139	880	804
v/s Ratio Prot		0.06			0.10			c0.45			0.29	
v/s Ratio Perm	0.02			c0.14			0.14		0.10	0.18		0.01
v/c Ratio	0.05	0.18		0.43	0.32		0.28	0.89	0.20	0.35	0.57	0.02
Uniform Delay, d1	18.0	18.7		20.5	19.7		10.7	16.8	10.2	11.2	12.9	9.3
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	0.3	0.7		3.3	1.5		0.4	10.6	0.1	1.5	0.8	0.0
Delay (s)	18.3	19.4		23.8	21.2		11.1	27.4	10.4	12.7	13.8	9.3
Level of Service	В	В		C	С		В	С	В	В	В	A
Approach Delay (s)		19.2			22.4			22.3			13.4	
Approach LOS		В			C			C			В	
Intersection Summary												
HCM 2000 Control Delay			19.8	н	CM 2000	Level of 9	Service		R			
HCM 2000 Volume to Cana	city ratio		0.71	11	5141 2000	20101010	001 1100		5			
Actuated Cycle Length (c)	ory ratio		76.5	¢,	im of lost	time (s)			13.0			
Intersection Canacity I Itiliza	tion		82.6%	10		of Service			10.0 F			
Analysis Period (min)	uon		15		0 20001				-			
			10									

Synchro 9 Report Page 3

	≯		1	-	•	t	*	×	Ţ	1	
ane Group	FRI	FRT	WBI	WRT	NRI	NRT	NRR	SBI	▼ SRT	SBR	
ane Configurations	100	1	K	1	K		1	N N		1	
Traffic Volume (vnh)	60	145	190	228	186	691	159	109	331	23	
Future Volume (vph)	60	145	190	228	186	691	150	100	331	23	
	Perm	NΔ	Perm	NΔ	Perm	NΔ	Perm	Perm	NΔ	Perm	
Protected Phases	1 CIIII	8	i cim	4	i cim	6	1 Cilli	1 Cilli	2	1 CIIII	
Permitted Phases	8	0	4	7	6	0	6	2	2	2	
Detector Phase	8	8	4	4	6	6	6	2	2	2	
Switch Phase	0	0	-	7	0	0	0	2	2	2	
Minimum Initial (c)	15.0	15.0	15.0	15.0	8.0	8.0	8.0	8.0	8.0	8.0	
Minimum Snlit (s)	31.0	31.0	31.0	31.0	44.0	44.0	44.0	44.0	44.0	44.0	
Total Split (s)	31.0	31.0	31.0	31.0	59.0	59.0	50 D	50 D	59.0	59.0	
Total Split (%)	34.4%	34.4%	34.4%	34.4%	65.6%	65.6%	65.6%	65.6%	65.6%	65.6%	
Vellow Time (s)	10	/ 1.4	10	10	5.0	5.0	5.0	5.0	5.0	5.0	
All Dod Time (S)	4.0	4.0	4.0	4.0	2.0	2.0	2.0	2.0	2.0	2.0	
act Time Adjuct (a)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Lost Time Aujust (S)	0.0	0.0	0.0	0.0	0.0	0.0	7.0	7.0	7.0	7.0	
rotal Lost Time (S)	0.0	0.0	0.0	0.0	7.0	7.0	7.0	7.0	7.0	7.0	
ead Log Optimize?											
Leau-Lay Optimize?	Mana	Mana	Mana	Mana	Max	Max	Мак	Мак	Max	Мах	
	20.0	20.0	20.0	20.0	IVIAX	IVIAX	IVIAX	IVIAX	EQ 1	IVIAX	
Act Elict Green (S)	20.9	20.9	20.9	20.9	0.61	0.61	52.1	52.1	0.61	0.61	
Actuated g/C Ratio	0.24	0.24	0.24	0.24	0.01	0.01	0.01	0.01	0.01	0.01	
//C Ratio	0.37	0.44	0.81	0.71	0.31	0.78	0.19	0.37	0.35	0.03	
Control Delay	33.9	28.0	50.4	37.5	10.8	21.4	2.1	14.3	10.4	2.0	
Jueue Delay	0.0	0.0	0.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0	
l otal Delay	33.9	28.0	50.4	37.5	10.8	21.4	Z. 1	14.3	10.4	2.0	
LUS Annarah Dalau	U	00.4	E	U 44.0	В	10.0	A	В	40.0	A	
Approach Delay		29.4		44.8		10.0			10.9		
Approach LUS		C		D		В			В		
ntersection Summary											
Cycle Length: 90											
Actuated Cycle Length: 86											
Natural Cycle: 80											
Control Type: Semi Act-Unco	oord										
Maximum v/c Ratio: 0.81											
Intersection Signal Delay: 23	.0			Ir	itersectio	n LOS: C	-				
ntersection Capacity Utilizat	ion 93.6%)		10	U Level	of Service	e F				
Analysis Period (min) 15											
Splits and Phases: 2: Ridd	lell Road	& Spence	r Avenue	/Centenn	ial Road						
4							•	5			
▼ 102								⊽ Ø4			

01-11-2021 Paradigm (PN/JJ) Synchro 9 Report Page 4

31s

Queues 2 [.] Riddell Road & S	Spencer	Aveni	Je/Cer	ntennia	al Roa	d			20 200195	31 PM - Orangevi	Peak Hou
	•	-	ŕ	+	1	1	1	1	ţ	~	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Group Flow (vph)	62	200	196	309	192	712	164	112	341	24	
v/c Ratio	0.37	0.44	0.81	0.71	0.31	0.78	0.19	0.37	0.35	0.03	
Control Delay	33.9	28.0	56.4	37.5	10.8	21.4	2.1	14.3	10.4	2.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	33.9	28.0	56.4	37.5	10.8	21.4	2.1	14.3	10.4	2.0	
Queue Length 50th (m)	8.9	26.4	32.0	46.3	15.4	87.9	0.0	9.4	28.1	0.0	
Queue Length 95th (m)	21.1	46.2	#64.7	74.6	30.6	#163.8	8.0	23.8	48.5	2.3	
Internal Link Dist (m)		130.7		209.9		212.7			592.2		
Turn Bay Length (m)	50.0		40.0		105.0		60.0	165.0		160.0	
Base Capacity (vph)	199	536	291	520	615	913	847	301	983	749	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.31	0.37	0.67	0.59	0.31	0.78	0.19	0.37	0.35	0.03	
Intersection Summary											
#Quebthspericantilenaolitione	ance disce	pacity, qu	eue may	be longer	r.						

	•	→	\mathbf{r}	1	+	•	1	Ť	1	>	Ŧ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	4Î		٦	4		٦	↑	1	٦	•	1
Traffic Volume (vph)	60	145	49	190	228	72	186	691	159	109	331	23
Future Volume (vph)	60	145	49	190	228	72	186	691	159	109	331	23
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0		6.0	6.0		7.0	7.0	7.0	7.0	7.0	7.0
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	0.96		1.00	0.96		1.00	1.00	0.85	1.00	1.00	0.85
FIt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1770	1796		1671	1746		1770	1508	1292	1687	1624	1214
FIt Permitted	0.37	1.00		0.57	1.00		0.55	1.00	1.00	0.28	1.00	1.00
Satd. Flow (perm)	684	1796		998	1746		1017	1508	1292	496	1624	1214
Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adi, Flow (vph)	62	149	51	196	235	74	192	712	164	112	341	24
RTOR Reduction (vph)	0	14	0	0	13	0	0	0	65	0	0	9
ane Group Flow (vph)	62	186	0	196	296	0	192	712	99	112	341	15
Heavy Vehicles (%)	2%	1%	4%	8%	3%	11%	2%	26%	25%	7%	17%	33%
Turn Type	Perm	NA		Perm	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases		8			4			6			2	
Permitted Phases	8			4			6		6	2		2
Actuated Green, G (s)	20.9	20.9		20.9	20.9		52.1	52.1	52.1	52.1	52.1	52.1
Effective Green, g (s)	20.9	20.9		20.9	20.9		52.1	52.1	52.1	52.1	52.1	52.1
Actuated g/C Ratio	0.24	0.24		0.24	0.24		0.61	0.61	0.61	0.61	0.61	0.61
Clearance Time (s)	6.0	6.0		6.0	6.0		7.0	7.0	7.0	7.0	7.0	7.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	166	436		242	424		616	913	782	300	983	735
/s Ratio Prot		0.10			0.17			c0.47			0.21	
/s Ratio Perm	0.09			c0.20			0.19		0.08	0.23		0.01
/c Ratio	0.37	0.43		0.81	0.70		0.31	0.78	0.13	0.37	0.35	0.02
Uniform Delay, d1	27.1	27.5		30.7	29.7		8.2	12.7	7.2	8.6	8.5	6.8
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
ncremental Delay, d2	1.4	0.7		17.8	5.0		1.3	6.6	0.3	3.5	1.0	0.0
Delav (s)	28.5	28.2		48.5	34.6		9.6	19.2	7.6	12.2	9.4	6.8
Level of Service	С	С		D	С		A	В	A	В	A	A
Approach Delay (s)		28.2			40.0			15.7			9.9	
Approach LOS		С			D			В			A	
ntersection Summary												
HCM 2000 Control Delay			21.2	H	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	city ratio		0.79									
Actuated Cycle Length (s)			86.0	Si	um of lost	time (s)			13.0			
ntersection Capacity Utiliza	tion		93.6%	IC	U Level o	of Service			F			
Analysis Period (min)			15									

Synchro 9 Report Page 5

01-11-2021 Paradigm (PN/JJ) Synchro 9 Report Page 6

Appendix E

Riddell Road and Alder Street Remedial Measures Traffic Operations Reports

Queues 1: Riddell Road & A	Alder St	reet					203	1 AM I	Peak H 200195	our w Imp (Alder) - Orangville Intersections
	٨	+	4	t	•	t	*	*	ţ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	21	287	188	144	34	421	205	146	743	
v/c Ratio	0.04	0.36	0.40	0.18	0.23	0.44	0.31	0.50	0.73	
Control Delay	11.2	13.0	15.6	9.0	19.4	17.9	3.9	23.4	22.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	11.2	13.0	15.6	9.0	19.4	17.9	3.9	23.4	22.8	
Queue Length 50th (m)	1.3	19.8	13.9	6.7	3.0	20.7	0.0	14.0	40.7	
Queue Length 95th (m)	5.0	38.3	30.5	16.7	8.3	28.1	8.8	25.9	50.7	
Internal Link Dist (m)		197.3		149.7		592.2			140.4	
Turn Bay Length (m)	25.0		25.0		95.0		35.0	110.0		
Base Capacity (vph)	587	791	475	792	342	2241	1265	685	2410	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.04	0.36	0.40	0.18	0.10	0.19	0.16	0.21	0.31	
Intersection Summary										

HCM Signalized Intersection Capacity Analysis 1: Riddell Road & Alder Street 2031 AM Peak Hour w Imp (Alder) 200195 - Orangville Intersections

	٦	-	\mathbf{r}	1	-	*	1	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	eî Î		٦	¢Î		۲	^	1	٦	≜ †₽	
Traffic Volume (vph)	17	193	43	154	70	48	28	345	168	120	592	17
Future Volume (vph)	17	193	43	154	70	48	28	345	168	120	592	17
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	7.0	7.0		7.0	7.0		6.0	6.0	6.0	6.0	6.0	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	0.95	1.00	1.00	0.95	
Frpb, ped/bikes	1.00	0.98		1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Flpb, ped/bikes	1.00	1.00		0.95	1.00		1.00	1.00	1.00	1.00	1.00	
Frt	1.00	0.97		1.00	0.94		1.00	1.00	0.85	1.00	1.00	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1805	1695		1689	1655		1582	2911	1583	1671	3129	
Flt Permitted	0.67	1.00		0.58	1.00		0.27	1.00	1.00	0.51	1.00	
Satd. Flow (perm)	1264	1695		1038	1655		444	2911	1583	890	3129	
Peak-hour factor, PHF	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
Adj. Flow (vph)	21	235	52	188	85	59	34	421	205	146	722	21
RTOR Reduction (vph)	0	7	0	0	22	0	0	0	138	0	3	0
Lane Group Flow (vph)	21	280	0	188	122	0	34	421	67	146	740	0
Confl. Peds. (#/hr)			52	52			2					2
Heavy Vehicles (%)	0%	9%	0%	2%	2%	16%	14%	24%	2%	8%	15%	8%
Turn Type	Perm	NA		Perm	NA		Perm	NA	Perm	Perm	NA	
Protected Phases		6			2			4			8	
Permitted Phases	6			2			4		4	8		
Actuated Green, G (s)	29.1	29.1		29.1	29.1		20.4	20.4	20.4	20.4	20.4	
Effective Green, q (s)	29.1	29.1		29.1	29.1		20.4	20.4	20.4	20.4	20.4	
Actuated g/C Ratio	0.47	0.47		0.47	0.47		0.33	0.33	0.33	0.33	0.33	
Clearance Time (s)	7.0	7.0		7.0	7.0		6.0	6.0	6.0	6.0	6.0	
Vehicle Extension (s)	0.2	0.2		0.2	0.2		3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	588	789		483	770		144	950	516	290	1021	
v/s Ratio Prot		0.17			0.07			0.14			c0.24	
v/s Ratio Perm	0.02			c0.18			0.08		0.04	0.16		
v/c Ratio	0.04	0.35		0.39	0.16		0.24	0.44	0.13	0.50	0.72	
Uniform Delay, d1	9.1	10.7		10.9	9.6		15.4	16.6	14.8	17.0	18.6	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	0.1	1.2		2.4	0.4		0.8	0.3	0.1	1.4	2.6	
Delay (s)	9.2	11.9		13.3	10.1		16.2	16.9	14.9	18.3	21.1	
Level of Service	A	В		В	В		В	В	В	В	С	
Approach Delay (s)		11.8			11.9			16.3			20.7	
Approach LOS		В			В			В			С	
Intersection Summary												
HCM 2000 Control Delay			16.8	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.53									
Actuated Cycle Length (s)	,		62.5	S	um of lost	time (s)			13.0			
Intersection Capacity Utiliza	ation		76.0%	IC	U Level o	of Service			D			
Analysis Period (min)			15									
- Oritical Lana Origina												

c Critical Lane Group

01-11-2021 Paradigm (PN/JJ) Synchro 9 Report Page 2

01-11-2021 Paradigm (PN/JJ)

Queues 1: Riddell Road & A	Alder St	reet					203	1 PM I	Peak H 200195 -	our w Imp (Alder) Orangeville Intersections
	≯	+	4	Ļ	<	Ť	1	1	ţ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	21	120	174	201	101	795	245	48	536	
v/c Ratio	0.04	0.16	0.33	0.26	0.35	0.68	0.34	0.28	0.47	
Control Delay	12.3	10.2	14.8	11.6	17.2	19.0	3.4	17.7	15.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	12.3	10.2	14.8	11.6	17.2	19.0	3.4	17.7	15.1	
Queue Length 50th (m)	1.3	5.7	12.0	11.4	7.9	37.8	0.0	3.7	22.4	
Queue Length 95th (m)	5.7	17.5	30.8	29.3	18.5	53.6	11.2	11.0	33.7	
Internal Link Dist (m)		197.3		149.7		592.2			140.4	
Turn Bay Length (m)	25.0		25.0		95.0		35.0	110.0		
Base Capacity (vph)	507	769	534	763	757	3088	1510	452	3016	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.04	0.16	0.33	0.26	0.13	0.26	0.16	0.11	0.18	
Intersection Summary										

HCM Signalized Intersection Capacity Analysis 1: Riddell Road & Alder Street 2031 PM Peak Hour w Imp (Alder) 200195 - Orangeville Intersections

	≯	-	\rightarrow	1	-	•	1	1	1	1	Ŧ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	eî		۲	¢Î		۲	††	1	۲	A	
Traffic Volume (vph)	19	72	39	160	122	63	93	731	225	44	459	34
Future Volume (vph)	19	72	39	160	122	63	93	731	225	44	459	34
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	7.0	7.0		7.0	7.0		6.0	6.0	6.0	6.0	6.0	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	0.95	1.00	1.00	0.95	
Frpb, ped/bikes	1.00	0.99		1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Flpb, ped/bikes	1.00	1.00		0.99	1.00		1.00	1.00	1.00	1.00	1.00	
Frt	1.00	0.95		1.00	0.95		1.00	1.00	0.85	1.00	0.99	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1805	1783		1775	1768		1803	3343	1615	1805	3263	
Flt Permitted	0.63	1.00		0.68	1.00		0.43	1.00	1.00	0.26	1.00	
Satd. Flow (perm)	1200	1783		1270	1768		820	3343	1615	491	3263	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	21	78	42	174	133	68	101	795	245	48	499	37
RTOR Reduction (vph)	0	17	0	0	16	0	0	0	160	0	10	0
Lane Group Flow (vph)	21	103	0	174	185	0	101	795	85	48	526	0
Confl. Peds. (#/hr)			7	7			2					2
Heavy Vehicles (%)	0%	0%	0%	1%	0%	6%	0%	8%	0%	0%	10%	0%
Turn Type	Perm	NA		Perm	NA		Perm	NA	Perm	Perm	NA	
Protected Phases		6			2			4			8	
Permitted Phases	6			2			4		4	8		
Actuated Green, G (s)	24.2	24.2		24.2	24.2		19.9	19.9	19.9	19.9	19.9	
Effective Green, g (s)	24.2	24.2		24.2	24.2		19.9	19.9	19.9	19.9	19.9	
Actuated g/C Ratio	0.42	0.42		0.42	0.42		0.35	0.35	0.35	0.35	0.35	
Clearance Time (s)	7.0	7.0		7.0	7.0		6.0	6.0	6.0	6.0	6.0	
Vehicle Extension (s)	0.2	0.2		0.2	0.2		3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	508	755		538	749		285	1165	562	171	1137	
v/s Ratio Prot		0.06			0.10			c0.24			0.16	
v/s Ratio Perm	0.02			c0.14			0.12		0.05	0.10		
v/c Ratio	0.04	0.14		0.32	0.25		0.35	0.68	0.15	0.28	0.46	
Uniform Delay, d1	9.6	10.1		11.0	10.6		13.8	15.9	12.8	13.4	14.4	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	0.2	0.4		1.6	0.8		0.8	1.7	0.1	0.9	0.3	
Delay (s)	9.8	10.4		12.6	11.4		14.6	17.6	12.9	14.3	14.7	
Level of Service	A	В		В	В		В	В	В	В	В	
Approach Delay (s)		10.3			11.9			16.3			14.7	
Approach LOS		В			В			В			В	
Intersection Summary												
HCM 2000 Control Delay			14.8	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.49									
Actuated Cycle Length (s)	· .		57.1	S	um of lost	t time (s)			13.0			
Intersection Capacity Utiliza	ation		64.4%	IC	U Level	of Service			С			
Analysis Period (min)			15									
- Oritical Lana Oray												

c Critical Lane Group

01-11-2021 Paradigm (PN/JJ) Synchro 9 Report Page 2

01-11-2021 Paradigm (PN/JJ)

Appendix F

Riddell Road and Centennial Road/Spencer Avenue Protected Left-Turn Phasing Operations Reports

Queues 2: Riddell Road & Sp	encer	Avenu	ıe/Cer	ntennia	al Road	2031 1	AM P	eak H	our w 200195	Imp (Sp 5 - Orangv	cencer LT)
	≯	+	4	•	•	Ť	*	*	Ŧ	4	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Group Flow (vph)	74	339	142	173	64	331	95	201	560	8	
v/c Ratio	0.28	0.83	0.59	0.31	0.56	0.59	0.17	0.78	0.72	0.01	
Control Delay	36.5	54.5	34.6	22.6	68.1	32.9	4.5	64.1	29.7	0.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	36.5	54.5	34.6	22.6	68.1	32.9	4.5	64.1	29.7	0.0	
Queue Length 50th (m)	13.3	66.5	21.4	21.9	13.8	58.8	0.0	41.8	97.8	0.0	
Queue Length 95th (m)	26.8	83.8	36.6	39.8	#32.4	94.7	9.1	#76.8	152.2	0.0	
Internal Link Dist (m)		130.7		209.9		212.7			592.2		
Turn Bay Length (m)	50.0		40.0		105.0		60.0	165.0		160.0	
Base Capacity (vph)	327	496	240	639	119	563	551	294	781	625	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.23	0.68	0.59	0.27	0.54	0.59	0.17	0.68	0.72	0.01	
Intersection Summary #Que5thsperiorAntilentationner	eedsoce	peleity, qu	eue may	be longe	r.						

HCM Signalized Intersection Capacity Analysis 2: Riddell Road & Spencer Avenue/Centennial Road

2031 AM Peak Hour w Imp (Spencer LT) 200195 - Orangville Intersections

	≯	-	\rightarrow	1	+	•	1	1	1	1	Ŧ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u> </u>	4Î		۲	4Î		۲.	•	1	۲.	•	1
Traffic Volume (vph)	72	186	101	138	97	71	62	321	92	195	543	8
Future Volume (vph)	72	186	101	138	97	71	62	321	92	195	543	8
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0		2.0	6.0		3.0	7.0	7.0	3.0	7.0	7.0
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	0.95		1.00	0.94		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1770	1778		1671	1673		1770	1508	1292	1687	1624	1214
Flt Permitted	0.65	1.00		0.23	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	1207	1778		397	1673		1770	1508	1292	1687	1624	1214
Peak-hour factor, PHF	0.97	0.79	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	74	235	104	142	100	73	64	331	95	201	560	8
RTOR Reduction (vph)	0	15	0	0	25	0	0	0	59	0	0	4
Lane Group Flow (vph)	74	324	0	142	148	0	64	331	36	201	560	4
Heavy Vehicles (%)	2%	1%	4%	8%	3%	11%	2%	26%	25%	7%	17%	33%
Turn Type	Perm	NA		pm+pt	NA		Prot	NA	Perm	Prot	NA	Perm
Protected Phases		8		7	4		1	6		5	2	
Permitted Phases	8			4					6			2
Actuated Green, G (s)	23.0	23.0		33.0	33.0		5.4	39.4	39.4	15.9	49.9	49.9
Effective Green, g (s)	23.0	23.0		33.0	33.0		5.4	39.4	39.4	15.9	49.9	49.9
Actuated g/C Ratio	0.22	0.22		0.32	0.32		0.05	0.38	0.38	0.15	0.48	0.48
Clearance Time (s)	6.0	6.0		2.0	6.0		3.0	7.0	7.0	3.0	7.0	7.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	266	392		223	529		91	569	488	257	776	580
v/s Ratio Prot		c0.18		c0.05	0.09		0.04	0.22		c0.12	c0.34	
v/s Ratio Perm	0.06			0.15					0.03			0.00
v/c Ratio	0.28	0.83		0.64	0.28		0.70	0.58	0.07	0.78	0.72	0.01
Uniform Delay, d1	33.8	38.8		27.9	26.7		48.7	25.9	20.8	42.5	21.7	14.2
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	0.6	13.3		5.8	0.3		21.8	4.3	0.3	14.3	5.7	0.0
Delay (s)	34.3	52.1		33.7	27.0		70.4	30.2	21.1	56.8	27.4	14.3
Level of Service	С	D		С	С		E	С	С	E	С	В
Approach Delay (s)		48.9			30.0			33.7			35.0	
Approach LOS		D			С			С			С	
Intersection Summary												
HCM 2000 Control Delay			36.8	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	city ratio		0.77									
Actuated Cycle Length (s)			104.3	S	um of lost	t time (s)			18.0			
Intersection Capacity Utiliza	ition		76.9%	IC	CU Level of	of Service	1		D			
Analysis Period (min)			15									
c Critical Lane Group												

01-11-2021 Paradigm (PN/JJ) Synchro 10 Report Page 1 01-11-2021 Paradigm (PN/JJ)

Queues		2031 PM Peak Hour w Imp (Spencer LT)								
1: Riddell Road & A	lder St	reet		200195 - Orangeville Intersections						
	۶	-	∢	←	1	Ť	۲	1	ŧ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	21	120	174	201	101	795	245	48	536	
v/c Ratio	0.04	0.16	0.33	0.26	0.35	0.68	0.34	0.28	0.47	
Control Delay	12.3	10.2	14.8	11.6	17.2	19.0	3.4	17.7	15.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	12.3	10.2	14.8	11.6	17.2	19.0	3.4	17.7	15.1	
Queue Length 50th (m)	1.3	5.7	12.0	11.4	7.9	37.8	0.0	3.7	22.4	
Queue Length 95th (m)	5.7	17.5	30.8	29.3	18.5	53.6	11.2	11.0	33.7	
Internal Link Dist (m)		197.3		149.7		592.2			140.4	
Turn Bay Length (m)	25.0		25.0		95.0		35.0	110.0		
Base Capacity (vph)	507	769	534	763	757	3088	1510	452	3016	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.04	0.16	0.33	0.26	0.13	0.26	0.16	0.11	0.18	
Intersection Summary										

HCM Signalized Intersection Capacity Analysis 1: Riddell Road & Alder Street 2031 PM Peak Hour w Imp (Spencer LT) 200195 - Orangeville Intersections

	۶	-	\mathbf{r}	4	+	×	٠	t	۲	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	f,		<u> </u>	ĥ		5	^	1	۲.	≜ 16-	
Traffic Volume (vph)	19	72	39	160	122	63	93	731	225	44	459	34
Future Volume (vph)	19	72	39	160	122	63	93	731	225	44	459	34
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	7.0	7.0		7.0	7.0		6.0	6.0	6.0	6.0	6.0	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	0.95	1.00	1.00	0.95	
Frpb, ped/bikes	1.00	0.99		1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Flpb, ped/bikes	1.00	1.00		0.99	1.00		1.00	1.00	1.00	1.00	1.00	
Frt	1.00	0.95		1.00	0.95		1.00	1.00	0.85	1.00	0.99	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1805	1783		1775	1768		1803	3343	1615	1805	3263	
Flt Permitted	0.63	1.00		0.68	1.00		0.43	1.00	1.00	0.26	1.00	
Satd. Flow (perm)	1200	1783		1270	1768		820	3343	1615	491	3263	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adi, Flow (vph)	21	78	42	174	133	68	101	795	245	48	499	37
RTOR Reduction (vph)	0	17	0	0	16	0	0	0	160	0	10	0
Lane Group Flow (vph)	21	103	0	174	185	0	101	795	85	48	526	0
Confl. Peds. (#/hr)			7	7			2					2
Heavy Vehicles (%)	0%	0%	0%	1%	0%	6%	0%	8%	0%	0%	10%	0%
Turn Type	Perm	NA		Perm	NA		Perm	NA	Perm	Perm	NA	
Protected Phases		6			2			4			8	
Permitted Phases	6			2			4		4	8		
Actuated Green, G (s)	24.2	24.2		24.2	24.2		19.9	19.9	19.9	19.9	19.9	
Effective Green, g (s)	24.2	24.2		24.2	24.2		19.9	19.9	19.9	19.9	19.9	
Actuated g/C Ratio	0.42	0.42		0.42	0.42		0.35	0.35	0.35	0.35	0.35	
Clearance Time (s)	7.0	7.0		7.0	7.0		6.0	6.0	6.0	6.0	6.0	
Vehicle Extension (s)	0.2	0.2		0.2	0.2		3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	508	755		538	749		285	1165	562	171	1137	
v/s Ratio Prot		0.06			0.10			c0.24			0.16	
v/s Ratio Perm	0.02			c0.14			0.12		0.05	0.10		
v/c Ratio	0.04	0.14		0.32	0.25		0.35	0.68	0.15	0.28	0.46	
Uniform Delay, d1	9.6	10.1		11.0	10.6		13.8	15.9	12.8	13.4	14.4	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	0.2	0.4		1.6	0.8		0.8	1.7	0.1	0.9	0.3	
Delay (s)	9.8	10.4		12.6	11.4		14.6	17.6	12.9	14.3	14.7	
Level of Service	A	В		В	В		В	В	В	В	В	
Approach Delay (s)		10.3			11.9			16.3			14.7	
Approach LOS		В			В			В			В	
Intersection Summary												
HCM 2000 Control Delay			14.8	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.49									
Actuated Cycle Length (s)			57.1	S	um of lost	t time (s)			13.0			
Intersection Capacity Utiliz	ation		64.4%	IC	U Level of	of Service			С			
Analysis Period (min)			15									
 Critical Lana Crown 												

c Critical Lane Group

01-11-2021 Paradigm (PN/JJ) Synchro 9 Report Page 2

01-11-2021 Paradigm (PN/JJ)

Queues 2031 PM Peak Hour w Imp (Spencer LT) 2: Riddell Road & Spencer Avenue/Centennial Road 200195 - Orangeville Intersections											
	≯	+	4	+	•	Ť	*	*	ŧ	~	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Group Flow (vph)	62	200	196	309	192	712	164	112	341	24	
v/c Ratio	0.41	0.67	0.77	0.71	0.73	0.88	0.22	0.84	0.45	0.04	
Control Delay	51.4	53.5	55.1	47.0	62.2	38.5	5.6	96.0	24.6	0.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	51.4	53.5	55.1	47.0	62.2	38.5	5.6	96.0	24.6	0.1	
Queue Length 50th (m)	13.1	41.5	37.2	63.2	42.5	136.5	4.9	25.8	51.5	0.0	
Queue Length 95th (m)	27.2	66.5	#63.1	94.6	69.0	#243.4	17.6	#63.1	92.6	0.0	
Internal Link Dist (m)		130.7		209.9		212.7			592.2		
Turn Bay Length (m)	50.0		40.0		105.0		60.0	165.0		160.0	
Base Capacity (vph)	208	407	256	543	341	805	745	134	755	617	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.30	0.49	0.77	0.57	0.56	0.88	0.22	0.84	0.45	0.04	
Intersection Summary											
Hou858hsnerwantslin, water water water and the longer.											

HCM Signalized Intersection Capacity Analysis 2: Riddell Road & Spencer Avenue/Centennial Road

2031 PM Peak Hour w Imp (Spencer LT) 200195 - Orangeville Intersections

	٦	-	\mathbf{r}	-	-	•	1	1	1	1	Ŧ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	f,		5	ĥ		٦	1	1	<u> </u>	1	1
Traffic Volume (vph)	60	145	49	190	228	72	186	691	159	109	331	23
Future Volume (vph)	60	145	49	190	228	72	186	691	159	109	331	23
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0		2.0	6.0		3.0	7.0	7.0	3.0	7.0	7.0
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	0.96		1.00	0.96		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1770	1796		1671	1746		1770	1508	1292	1687	1624	1214
Flt Permitted	0.51	1.00		0.38	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	941	1796		676	1746		1770	1508	1292	1687	1624	1214
Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	62	149	51	196	235	74	192	712	164	112	341	24
RTOR Reduction (vph)	0	11	0	0	10	0	0	0	55	0	0	13
Lane Group Flow (vph)	62	189	0	196	299	0	192	712	109	112	341	11
Heavy Vehicles (%)	2%	1%	4%	8%	3%	11%	2%	26%	25%	7%	17%	33%
Turn Type	Perm	NA		pm+pt	NA		Prot	NA	Perm	Prot	NA	Perm
Protected Phases		8		7	4		1	6		5	2	
Permitted Phases	8			4					6			2
Actuated Green, G (s)	18.1	18.1		27.7	27.7		16.9	60.5	60.5	9.0	52.6	52.6
Effective Green, g (s)	18.1	18.1		27.7	27.7		16.9	60.5	60.5	9.0	52.6	52.6
Actuated g/C Ratio	0.16	0.16		0.24	0.24		0.15	0.53	0.53	0.08	0.46	0.46
Clearance Time (s)	6.0	6.0		2.0	6.0		3.0	7.0	7.0	3.0	7.0	7.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	150	287		232	427		264	805	690	134	754	564
v/s Ratio Prot		0.11		c0.06	c0.17		c0.11	c0.47		c0.07	0.21	
v/s Ratio Perm	0.07			0.15					0.08			0.01
v/c Ratio	0.41	0.66		0.84	0.70		0.73	0.88	0.16	0.84	0.45	0.02
Uniform Delay, d1	42.8	44.7		39.6	39.0		46.0	23.3	13.4	51.4	20.5	16.4
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	1.8	5.4		23.5	5.1		9.6	13.6	0.5	34.1	2.0	0.1
Delay (s)	44.6	50.0		63.1	44.1		55.5	36.8	13.9	85.4	22.5	16.4
Level of Service	D	D		E	D		E	D	В	F	С	В
Approach Delay (s)		48.8			51.5			36.7			37.0	
Approach LOS		D			D			D			D	
Intersection Summary												
HCM 2000 Control Delay			41.3	H	ICM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	city ratio		0.86									
Actuated Cycle Length (s)			113.2	S	um of lost	t time (s)			18.0			
Intersection Capacity Utiliza	ition		90.5%	10	CU Level of	of Service)		E			
Analysis Period (min)			15									
c Critical Lane Group												

01-11-2021 Paradigm (PN/JJ) Synchro 9 Report Page 3 01-11-2021 Paradigm (PN/JJ)
Appendix G

Riddell Road and Centennial Road/Spencer Avenue Lane Reassignment Operations Reports

Queues 2031 AM Peak Hour (Spencer all Imp)										
2: Riddell Road & S	2: Riddell Road & Spencer Avenue/Centennial Road 200195 - Orangville Intersections									
	٠	-	4	+	•	t	۲	1	ŧ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	74	339	142	173	64	331	95	201	568	
v/c Ratio	0.28	0.83	0.57	0.30	0.46	0.60	0.18	0.78	0.40	
Control Delay	36.7	55.0	32.4	21.9	58.1	33.8	4.6	64.0	21.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	36.7	55.0	32.4	21.9	58.1	33.8	4.6	64.0	21.2	
Queue Length 50th (m)	13.4	66.9	21.2	21.5	13.6	60.1	0.0	42.2	44.6	
Queue Length 95th (m)	26.9	84.5	36.3	39.2	28.3	95.4	9.1	#76.8	62.7	
Internal Link Dist (m)		130.7		209.9		212.7			592.2	
Turn Bay Length (m)	50.0		40.0		105.0		60.0	165.0		
Base Capacity (vph)	322	488	254	649	163	553	542	295	1413	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.23	0.69	0.56	0.27	0.39	0.60	0.18	0.68	0.40	
Intersection Summary										
Queue shown is hiddinuni.	Quede shown is niaximuni aner wordycles, decide may be to sol.									

HCM Signalized Intersection Capacity Analysis 2: Riddell Road & Spencer Avenue/Centennial Road 2031 AM Peak Hour (Spencer all Imp) 200195 - Orangville Intersections

	≯	-	\rightarrow	1	+	•	1	†	1	1	Ŧ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	ef 👘		۲	¢Î		۲	1	1	۲	A	
Traffic Volume (vph)	72	186	101	138	97	71	62	321	92	195	543	8
Future Volume (vph)	72	186	101	138	97	71	62	321	92	195	543	8
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0		2.0	6.0		3.0	7.0	7.0	3.0	7.0	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	0.95	
Frt	1.00	0.95		1.00	0.94		1.00	1.00	0.85	1.00	1.00	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1770	1778		1671	1673		1770	1508	1292	1687	3073	
Flt Permitted	0.65	1.00		0.22	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	1207	1778		392	1673		1770	1508	1292	1687	3073	
Peak-hour factor, PHF	0.97	0.79	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adi, Flow (vph)	74	235	104	142	100	73	64	331	95	201	560	8
RTOR Reduction (vph)	0	15	0	0	25	0	0	0	60	0	1	0
Lane Group Flow (vph)	74	324	0	142	148	0	64	331	35	201	567	0
Heavy Vehicles (%)	2%	1%	4%	8%	3%	11%	2%	26%	25%	7%	17%	33%
Turn Type	Perm	NA	.,.	pm+pt	NA		Prot	NA	Perm	Prot	NA	
Protected Phases		8		7	4		1	6		5	2	
Permitted Phases	8	v		4			•	· ·	6	Ū	-	
Actuated Green, G (s)	22.8	22.8		33.6	33.6		6.9	38.6	38.6	15.9	47.6	
Effective Green, g (s)	22.8	22.8		33.6	33.6		6.9	38.6	38.6	15.9	47.6	
Actuated g/C Ratio	0.22	0.22		0.32	0.32		0.07	0.37	0.37	0.15	0.46	
Clearance Time (s)	6.0	6.0		2.0	6.0		3.0	7.0	7.0	3.0	7.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Lane Grn Can (vnh)	264	389		234	539		117	559	479	257	1405	
v/s Ratio Prot	201	c0 18		c0.05	0.09		0.04	c0 22	110	c0 12	0.18	
v/s Ratio Perm	0.06	00.10		0.14	0.00		0.01	00.22	0.03	00.12	0.10	
v/c Ratio	0.28	0.83		0.61	0.27		0.55	0.59	0.07	0 78	0.40	
Uniform Delay, d1	33.8	38.8		27.3	26.2		47 1	26.4	21.2	42.4	18.8	
Progression Factor	1 00	1 00		1 00	1 00		1.00	1 00	1 00	1.00	1 00	
Incremental Delay, d2	0.6	14.2		4.4	0.3		5.1	4.6	0.3	14.3	0.9	
Delay (s)	34.4	53.0		31.7	26.5		52.2	31.0	21.5	56.7	19.7	
Level of Service	C	D		C	C		D	C	C	F	B	
Approach Delay (s)	Ű	497		Ŭ	28.8		-	31.9	Ŭ	-	29.4	
Approach LOS		D			C			C			C	
Intersection Summary												
HCM 2000 Control Delay			34.1	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capacity ratio 0.69												
Actuated Cycle Length (s) 104.1					um of lost	t time (s)			18.0			
Intersection Capacity Utiliza	tion		71.9%	IC	U Level o	of Service			С			_
Analysis Period (min)			15									
c Critical Lane Group												

01-11-2021 Paradigm (PN/JJ) Synchro 10 Report Page 1 01-11-2021 Paradigm (PN/JJ) Synchro 10 Report Page 2

Queues	Snencer	Δνεηι	ıe/Cer	tennia	l Roa	2 d	031 PI	M Pea	k Hour 200195 -	(Spencer all Imp)
	<u> </u>	→		+	1	<u></u>	*	1	Ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	62	200	196	309	192	712	164	112	365	
v/c Ratio	0.41	0.67	0.77	0.71	0.73	0.88	0.22	0.84	0.26	
Control Delay	51.4	53.5	55.1	47.0	62.2	38.5	5.6	96.0	20.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	51.4	53.5	55.1	47.0	62.2	38.5	5.6	96.0	20.0	
Queue Length 50th (m)	13.1	41.5	37.2	63.2	42.5	136.5	4.9	25.8	25.5	
Queue Length 95th (m)	27.2	66.5	#63.1	94.6	69.0	#243.4	17.6	#63.1	43.4	
Internal Link Dist (m)		130.7		209.9		212.7			592.2	
Turn Bay Length (m)	50.0		40.0		105.0		60.0	165.0		
Base Capacity (vph)	208	407	256	543	341	805	745	134	1410	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.30	0.49	0.77	0.57	0.56	0.88	0.22	0.84	0.26	
Intersection Summary										
#Quabatismericantilenzetienteredescapacity, queue may be longer.										

HCM Signalized Intersection Capacity Analysis 2: Riddell Road & Spencer Avenue/Centennial Road 2031 PM Peak Hour (Spencer all Imp) 200195 - Orangeville Intersections

	≯	-	\mathbf{r}	1	+	*	1	1	1	1	Ŧ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	4Î		1	ĥ		٦	1	1	ň	≜ 1₽	
Traffic Volume (vph)	60	145	49	190	228	72	186	691	159	109	331	23
Future Volume (vph)	60	145	49	190	228	72	186	691	159	109	331	23
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0		2.0	6.0		3.0	7.0	7.0	3.0	7.0	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	0.95	
Frt	1.00	0.96		1.00	0.96		1.00	1.00	0.85	1.00	0.99	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1770	1796		1671	1746		1770	1508	1292	1687	3028	
Flt Permitted	0.51	1.00		0.38	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	941	1796		676	1746		1770	1508	1292	1687	3028	
Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	62	149	51	196	235	74	192	712	164	112	341	24
RTOR Reduction (vph)	0	11	0	0	10	0	0	0	55	0	4	0
Lane Group Flow (vph)	62	189	0	196	299	0	192	712	109	112	361	0
Heavy Vehicles (%)	2%	1%	4%	8%	3%	11%	2%	26%	25%	7%	17%	33%
Turn Type	Perm	NA		pm+pt	NA		Prot	NA	Perm	Prot	NA	
Protected Phases		8		7	4		1	6		5	2	
Permitted Phases	8			4					6			
Actuated Green, G (s)	18.1	18.1		27.7	27.7		16.9	60.5	60.5	9.0	52.6	
Effective Green, g (s)	18.1	18.1		27.7	27.7		16.9	60.5	60.5	9.0	52.6	
Actuated g/C Ratio	0.16	0.16		0.24	0.24		0.15	0.53	0.53	0.08	0.46	
Clearance Time (s)	6.0	6.0		2.0	6.0		3.0	7.0	7.0	3.0	7.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	150	287		232	427		264	805	690	134	1407	
v/s Ratio Prot		0.11		c0.06	c0.17		c0.11	c0.47		c0.07	0.12	
v/s Ratio Perm	0.07			0.15					0.08			
v/c Ratio	0.41	0.66		0.84	0.70		0.73	0.88	0.16	0.84	0.26	
Uniform Delay, d1	42.8	44.7		39.6	39.0		46.0	23.3	13.4	51.4	18.4	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	1.8	5.4		23.5	5.1		9.6	13.6	0.5	34.1	0.4	
Delay (s)	44.6	50.0		63.1	44.1		55.5	36.8	13.9	85.4	18.9	
Level of Service	D	D		E	D		E	D	В	F	В	
Approach Delay (s)		48.8			51.5			36.7			34.5	
Approach LOS		D			D			D			С	
Intersection Summary												
HCM 2000 Control Delay 40.8					CM 2000	Level of	Service		D			
HCM 2000 Volume to Capacity ratio 0.86												
Actuated Cycle Length (s)			113.2	S	um of lost	t time (s)			18.0			
Intersection Capacity Utiliza	ition		90.5%	10	CU Level o	of Service)		E			
Analysis Period (min)			15									_
c Critical Lane Group												

01-11-2021 Paradigm (PN/JJ) Synchro 9 Report Page 1 01-11-2021 Paradigm (PN/JJ) Synchro 9 Report Page 2

Appendix H

2031 ARCADY Reports

Junctions 8

ARCADY 8 - Roundabout Module

Version: 8.0.6.541 [19821,26/11/2015] © Copyright TRL Limited, 2020

For sales and distribution information, program advice and maintenance, contact TRL: Tel: +44 (0)1344 770758 email: software@trl.co.uk Web: http://www.trlsoftware.co.uk

The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution

Filename: Alder and Riddell.arc8 Path: C:\Users\AdamMorrison\Desktop\Projects\200195 - Arcady Report generation date: 2020-08-25 8:03:46 PM

Summary of intersection performance

	АМ							
	Queue (PCE)	95% Queue (PCE)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	
		A1	- Backg	round 20	31			
Intersection 1 - Leg North	0.46	1.04	5.57	0.31	Α			
Intersection 1 - Leg West	3.41	10.23	15.73	0.76	С	11.62	р	
Intersection 1 - Leg South	0.75	1.07	9.81	0.42	A	11.05	D	
Intersection 1 - Leg East	1.63	1.16	10.01	0.59	В			
Intersection 2 - Leg North	0.46	1.04	5.50	0.30	Α			
Intersection 2 - Leg West	1.10	?	4.98	0.49	Α	E 46		
Intersection 2 - Leg South	0.72	1.07	9.34	0.40	A	5.40	A	
Intersection 2 - Leg East	0.71	1.16	4.29	0.38	A			
Intersection 3 - Leg North	0.25	~1	3.03	0.19	Α			
Intersection 3 - Leg West	1.09	?	4.91	0.49	Α			
Intersection 3 - Leg South	0.32	~1	4.18	0.23	Α	4.32	A	
Intersection 3 - Leg East	0.70	1.16	4.23	0.38	A]		

Values shown are the maximum values over all time segments. Delay is the maximum value of average delay per arriving vehicle. Intersection LOS and Intersection Delay are demandweighted averages.

"D1 - Background 2031, PM" model duration: 4:00 PM - 5:30 PM "D2 - Background 2031, AM " model duration: 8:00 AM - 9:30 AM

Run using Junctions 8.0.6.541 at 2020-08-25 8:03:45 PM

File summary

Title	(untitled)
Location	
Site Number	
Date	2020-08-25
Version	
Status	(new file)
Identifier	
Client	
Jobnumber	
Analyst	AdamMorrison
Description	

Analysis Options

Vehicle Length	Do Queue	Calculate Residual	Residual Capacity Criteria	V/C Ratio	Average Delay Threshold	Queue Threshold
(m)	Variations	Capacity	Type	Threshold	(s)	(PCE)
5.75	✓		N/A	0.85	36.00	20.00

Units

Distance Units	Speed Units	Traffic Units Input	Traffic Units Results	Flow Units	Average Delay Units	Total Delay Units	Rate Of Delay Units
m	kph	PCE	PCE	perHour	s	-Min	perMin

(Default Analysis Set) - Background 2031, AM

Data Errors and Warnings

No errors or warnings

Analysis Set Details

Name	Roundabout Capacity Model	Description	Include In Report	Use Specific Demand Set(s)	Specific Demand Set(s)	Locked	Network Flow Scaling Factor (%)	Network Capacity Scaling Factor (%)	Reason For Scaling Factors
(Default Analysis Set)	ARCADY		~				100.000	100.000	

Demand Set Details

Name	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Results For Central Hour Only	Single Time Segment Only	Locked	Run Automatically	Use Relationship	Relationship
Background 2031, AM	Background 2031	AM		ONE HOUR	08:00	09:30	90	15				~		

Intersection Network

Intersections

Junction	Intersection	Name	Intersection Type	Leg Order	Grade Separated	Large Roundabout	Do Geometric Delay	Intersection Delay (s)	Intersection LOS
1	1	(untitled)	Roundabout	North,West,South,East				11.63	В
2	2	(untitled)	Roundabout	North,West,South,East				5.46	А
3	3	(untitled)	Roundabout	North,West,South,East				4.32	A

Intersection Network Options

Driving Side	Lighting
Right	Normal/unknown

Legs

Legs

Intersection	Leg	Leg	Name	Description
1	North	North	Alder Street	
1	West	West	Riddell Road	
1	South	South	Alder Street	
1	East	East	Riddell Road	
2	North	North	Alder Street	
2	West	West	Riddell Road	
2	South	South	Alder Street	
2	East	East	Riddell Road	
3	North	North	Alder Street	
3	West	West	Riddell Road	
3	South	South	Alder Street	
3	East	East	Riddell Road	

Capacity Options

Intersection	Leg	Minimum Capacity (PCE/hr)	Maximum Capacity (PCE/hr)	Assume Flat Start Profile	Initial Queue (PCE)
1	North	0.00	99999.00		0.00
1	West	0.00	99999.00		0.00
1	South	0.00	99999.00		0.00
1	East	0.00	99999.00		0.00
2	North	0.00	99999.00		0.00

2	West	0.00	99999.00	0.00
2	South	0.00	99999.00	0.00
2	East	0.00	99999.00	0.00
3	North	0.00	99999.00	0.00
3	West	0.00	99999.00	0.00
3	South	0.00	99999.00	0.00
3	East	0.00	99999.00	0.00

Roundabout Geometry

Intersection	Leg	V - Approach road half- width (m)	E - Entry width (m)	l' - Effective flare length (m)	R - Entry radius (m)	D - Inscribed circle diameter (m)	PHI - Conflict (entry) angle (deg)	Exit Only
1	North	3.50	4.50	30.00	20.00	40.00	25.00	
1	West	3.50	4.50	30.00	20.00	40.00	25.00	
1	South	3.50	4.50	30.00	20.00	40.00	25.00	
1	East	3.50	4.50	30.00	20.00	40.00	25.00	
2	North	3.50	4.50	30.00	20.00	47.50	25.00	
2	West	3.50	8.00	30.00	20.00	47.50	25.00	
2	South	3.50	4.50	30.00	20.00	47.50	25.00	
2	East	3.50	8.00	30.00	20.00	47.50	25.00	
3	North	3.50	8.00	30.00	20.00	55.00	25.00	
3	West	3.50	8.00	30.00	20.00	55.00	25.00	
3	South	3.50	8.00	30.00	20.00	55.00	25.00	
3	East	3.50	8.00	30.00	20.00	55.00	25.00	

Slope / Intercept / Capacity

Leg Intercept Adjustments

Intersection	Leg	Туре	Reason	Direct Intercept Adjustment (PCE/hr)	Percentage Intercept Adjustment (%)
1	North	Percentage	Region of Waterloo Standard		90.00
1	West	Percentage	Region of Waterloo Standard		90.00
1	South	Percentage	Region of Waterloo Standard		90.00
1	East	Percentage	Region of Waterloo Standard		90.00
2	North	Percentage	Region of Waterloo Standard		90.00
2	West	Percentage	Region of Waterloo Standard		90.00
2	South	Percentage	Region of Waterloo Standard		90.00
2	East	Percentage	Region of Waterloo Standard		90.00
3	North	Percentage	Region of Waterloo Standard		90.00
3	West	Percentage	Region of Waterloo Standard		90.00
3	South	Percentage	Region of Waterloo Standard		90.00
3	East	Percentage	Region of Waterloo Standard		90.00

Roundabout Slope and Intercept used in model

Intersection	Leg	Enter slope and intercept directly	Entered slope	Entered intercept (PCE/hr)	Final Slope	Final Intercept (PCE/hr)
1	North		(calculated)	(calculated)	0.579	1221.701
1	West		(calculated)	(calculated)	0.579	1221.701
1	South		(calculated)	(calculated)	0.579	1221.701
1	East		(calculated)	(calculated)	0.579	1221.701
2	North		(calculated)	(calculated)	0.558	1221.701
2	West		(calculated)	(calculated)	0.685	1814.551
2	South		(calculated)	(calculated)	0.558	1221.701
2	East		(calculated)	(calculated)	0.685	1814.551
3	North		(calculated)	(calculated)	0.647	1814.551
3	West		(calculated)	(calculated)	0.647	1814.551
3	South		(calculated)	(calculated)	0.647	1814.551
3	East		(calculated)	(calculated)	0.647	1814.551

The slope and intercept shown above include any corrections and adjustments.

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCE Factor for a Truck (PCE)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
---------------------------	------------------------------------	------------------------------------	-------------------------------------	-----------------------	------------------------------------	-----------------------------------	---------------------------------------	--	--	---

V V Huck Percentages 2.00 V V
--

Entry Flows

General Flows Data

Intersection	Leg	Profile Type	Use Turning Counts	Average Demand Flow (PCE/hr)	Flow Scaling Factor (%)
1	North	ONE HOUR	✓	272.00	100.000
1	West	ONE HOUR	✓	729.00	100.000
1	South	ONE HOUR	~	253.00	100.000
1	East	ONE HOUR	✓	541.00	100.000
2	North	ONE HOUR	✓	272.00	100.000
2	West	ONE HOUR	✓	729.00	100.000
2	South	ONE HOUR	~	253.00	100.000
2	East	ONE HOUR	✓	541.00	100.000
3	North	ONE HOUR	~	272.00	100.000
3	West	ONE HOUR	✓	729.00	100.000
3	South	ONE HOUR	1	253.00	100.000
3	East	ONE HOUR	✓	541.00	100.000

Turning Proportions

Turning Counts / Proportions (PCE/hr) - Intersection 1 (for whole period)

	То									
		North	West	South	East					
	North	0.000	48.000	70.000	154.000					
From	West	120.000	0.000	17.000	592.000					
	South	193.000	17.000	0.000	43.000					
	East	168.000	345.000	28.000	0.000					

Turning Proportions (PCE) - Intersection 1 (for whole period)

	То								
		North	West	South	East				
	North	0.00	0.18	0.26	0.57				
From	West	0.16	0.00	0.02	0.81				
	South	0.76	0.07	0.00	0.17				
	East	0.31	0.64	0.05	0.00				

Turning Counts / Proportions (PCE/hr) - Intersection 2 (for whole period)

	То									
		North	West	South	East					
	North	0.000	48.000	70.000	154.000					
From	West	120.000	0.000	17.000	592.000					
	South	193.000	17.000	0.000	43.000					
	East	168.000	345.000	28.000	0.000					

Turning Proportions (PCE) - Intersection 2 (for whole period)

	То											
From		North	West	South	East							
	North	0.00	0.00 0.18		0.57							
	West	0.16	0.00	0.02	0.81							
	South	0.76	0.07	0.00	0.17							
	East	0.31	0.64	0.05	0.00							

Turning Counts / Proportions (PCE/hr) - Intersection 3 (for whole period)

То										
	North	West	South	East						
North	0.000	48.000	70.000	154.000						

	From	West	120.000	0.000	17.000	592.000	
		South	193.000	17.000	0.000	43.000	
		East	168.000	345.000	28.000	0.000	

Turning Proportions (PCE) - Intersection 3 (for whole period)

		То										
		North West		South	East							
	North	0.00	0.18	0.26	0.57							
From	West	0.16	0.00	0.02	0.81							
	South	0.76	0.07	0.00	0.17							
	East	0.31	0.64	0.05	0.00							

Vehicle Mix

Average PCE Per Vehicle - Intersection 1 (for whole period)

	То										
From		North	West	South	East						
	North	1.000	1.160	1.020	1.020						
	West	1.080	1.000	1.080	1.150						
	South	1.090	1.000	1.000	1.000						
	East	1.020	1.240	1.140	1.000						

Truck Percentages - Intersection 1 (for whole period)

		То											
		North	West	South	East								
	North	0.0	16.0	2.0	2.0								
From	West	8.0	0.0	8.0	15.0								
	South	9.0	0.0	0.0	0.0								
	East	2.0	24.0	14.0	0.0								

Average PCE Per Vehicle - Intersection 2 (for whole period)

		То										
		North West		South	East							
	North	1.000	1.160	1.020	1.020							
From	West	1.080	1.000	1.080	1.150							
	South	1.090	1.000	1.000	1.000							
	East	1.020	1.240	1.140	1.000							

Truck Percentages - Intersection 2 (for whole period)

			То			
		North West		South	East	
From	North	0.0	16.0	2.0	2.0	
	West	8.0	0.0	8.0	15.0	
	South	9.0	0.0	0.0	0.0	
	East	2.0	24.0	14.0	0.0	

Average PCE Per Vehicle - Intersection 3 (for whole period)

		То										
		North West		South	East							
	North	1.000	1.160	1.020	1.020							
From	West	1.080	1.000	1.080	1.150							
	South	1.090	1.000	1.000	1.000							
	East	1.020	1.240	1.140	1.000							

Truck Percentages - Intersection 3 (for whole period)

			То			
		North West		South	East	
	North	0.0	16.0	2.0	2.0	
From	West	8.0	0.0	8.0	15.0	
	South	9.0	0.0	0.0	0.0	
	East	2.0	24.0	14.0	0.0	

Results

Results Summary for whole modelled period

Intersection	Leg	Max V/C Ratio	Max Delay (s)	Max Queue (PCE)	Max 95th percentile Queue (PCE)	Max LOS	Average Demand (PCE/hr)	Total Intersection Arrivals (PCE)	Total Queueing Delay (PCE- min)	Average Queueing Delay (s)	Rate Of Queueing Delay (PCE- min/min)	Inclusive Total Queueing Delay (PCE- min)	Inclusive Average Queueing Delay (s)
1	North	0.31	5.57	0.46	1.04	A	A 249.59 374.39 31.05 4.98		0.35	31.05	4.98		
1	West	0.76	15.73	3.41	10.23	С	668.94	1003.41	180.56	10.80	2.01	180.59	10.80
1	South	0.42	9.81	0.75	1.07	A	232.16	348.24	44.61	7.69	0.50	44.61	7.69
1	East	0.59	10.01	1.63	1.16	В	496.43	744.65	98.49	7.94	1.09	98.50	7.94
2	North	0.30	5.50	0.46	1.04	A	249.59	374.39	30.74	4.93	0.34	30.74	4.93
2	West	0.49	4.98	1.10	?	A	668.94	1003.41	71.25	4.26	0.79	71.26	4.26
2	South	0.40	9.34	0.72	1.07	Α	232.16	348.24	43.10	7.43	0.48	43.10	7.43
2	East	0.38	4.29	0.71	1.16	A	496.43	744.65	47.38	3.82	0.53	47.38	3.82
3	North	0.19	3.03	0.25	~1	A	249.59	374.39	17.68	2.83	0.20	17.68	2.83
3	West	0.49	4.91	1.09	?	Α	668.94	1003.41	70.56	4.22	0.78	70.56	4.22
3	South	0.23	4.18	0.32	~1	Α	232.16	348.24	21.34	3.68	0.24	21.34	3.68
3	East	0.38	4.23	0.70	1.16	A	496.43	744.65	46.86	3.78	0.52	46.86	3.78

Main Results for each time segment

Main results: (08:00-08:15)

Intersection	Leg	Total Demand (PCE/hr)	Intersection Arrivals (PCE)	Entry Flow (PCE/hr)	Exit Flow (PCE/hr)	Circulating Flow (PCE/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCE/hr)	Saturation Capacity (PCE/hr)	V/C Ratio	Start Queue (PCE)	End Queue (PCE)	Delay (s)	LOS
1	North	204.78	51.19	203.78	359.61	291.62	0.00	1052.93	840.41	0.194	0.00	0.25	4.415	Α
1	West	548.83	137.21	544.47	306.64	188.75	0.00	1112.46	793.97	0.493	0.00	1.09	7.148	Α
1	South	190.47	47.62	189.24	86.08	647.15	0.00	847.16	497.51	0.225	0.00	0.31	5.829	Α
1	East	407.29	101.82	404.52	589.69	246.70	0.00	1078.92	907.06	0.378	0.00	0.69	6.153	Α
2	North	204.78	51.19	203.78	360.37	292.49	0.00	1058.50	631.06	0.193	0.00	0.25	4.385	Α
2	West	548.83	137.21	546.65	307.45	188.82	0.00	1685.25	1405.16	0.326	0.00	0.55	3.587	Α
2	South	190.47	47.62	189.27	86.19	649.28	0.00	859.42	256.59	0.222	0.00	0.30	5.722	Α
2	East	407.29	101.82	405.78	591.46	247.08	0.00	1645.36	1510.32	0.248	0.00	0.38	3.356	Α
3	North	204.78	51.19	204.18	360.78	292.53	0.00	1625.41	1189.09	0.126	0.00	0.15	2.638	Α
3	West	548.83	137.21	546.66	307.56	189.15	0.00	1692.25	1136.59	0.324	0.00	0.54	3.565	Α
3	South	190.47	47.62	189.80	86.30	649.51	0.00	1394.59	661.49	0.137	0.00	0.17	3.187	Α
3	East	407.29	101.82	405.79	591.79	247.53	0.00	1654.51	1338.57	0.246	0.00	0.38	3.331	Α

Main results: (08:15-08:30)

Intersection	Leg	Total Demand (PCE/hr)	Intersection Arrivals (PCE)	Entry Flow (PCE/hr)	Exit Flow (PCE/hr)	Circulating Flow (PCE/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCE/hr)	Saturation Capacity (PCE/hr)	V/C Ratio	Start Queue (PCE)	End Queue (PCE)	Delay (s)	LOS
1	North	244.52	61.13	244.22	431.26	349.77	0.00	1019.27	840.41	0.240	0.25	0.33	4.838	Α
1	West	655.36	163.84	653.04	367.75	226.23	0.00	1090.77	793.97	0.601	1.09	1.67	9.294	Α
1	South	227.44	56.86	226.91	103.19	776.08	0.00	772.54	497.51	0.294	0.31	0.44	7.033	A
1	East	486.35	121.59	485.19	707.15	295.84	0.00	1050.48	907.06	0.463	0.69	0.98	7.355	Α
2	North	244.52	61.13	244.22	431.75	350.24	0.00	1026.28	631.06	0.238	0.25	0.32	4.794	Α
2	West	655.36	163.84	654.59	368.19	226.27	0.00	1659.61	1405.16	0.395	0.55	0.74	4.067	Α
2	South	227.44	56.86	226.93	103.26	777.60	0.00	787.82	256.59	0.289	0.30	0.43	6.844	Α
2	East	486.35	121.59	485.87	708.42	296.12	0.00	1611.78	1510.32	0.302	0.38	0.50	3.697	Α
3	North	244.52	61.13	244.37	431.97	350.27	0.00	1588.08	1189.09	0.154	0.15	0.19	2.791	Α
3	West	655.36	163.84	654.61	368.24	226.39	0.00	1668.17	1136.59	0.393	0.54	0.73	4.033	A
3	South	227.44	56.86	227.22	103.30	777.69	0.00	1311.71	661.49	0.173	0.17	0.22	3.542	Α
3	East	486.35	121.59	485.88	708.56	296.36	0.00	1622.93	1338.57	0.300	0.38	0.49	3.661	Α

Main results: (08:30-08:45)

Intersection	Leg	Total Demand (PCE/hr)	Intersection Arrivals (PCE)	Entry Flow (PCE/hr)	Exit Flow (PCE/hr)	Circulating Flow (PCE/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCE/hr)	Saturation Capacity (PCE/hr)	V/C Ratio	Start Queue (PCE)	End Queue (PCE)	Delay (s)	LOS
					1									1 1

1	North	299.48	74.87	298.95	526.82	427.58	0.00	974.23	840.41	0.307	0.33	0.46	5.551	Α
1	West	802.64	200.66	796.10	449.64	276.89	0.00	1061.45	793.97	0.756	1.67	3.31	15.046	С
1	South	278.56	69.64	277.36	126.20	946.79	0.00	673.74	497.51	0.413	0.44	0.74	9.664	A
1	East	595.65	148.91	593.14	862.89	361.27	0.00	1012.61	907.06	0.588	0.98	1.61	9.871	A
2	North	299.48	74.87	298.96	528.24	428.75	0.00	982.47	631.06	0.305	0.32	0.45	5.486	A
2	West	802.64	200.66	801.20	450.72	276.99	0.00	1624.88	1405.16	0.494	0.74	1.10	4.956	A
2	South	278.56	69.64	277.44	126.41	951.78	0.00	690.64	256.59	0.403	0.43	0.71	9.276	A
2	East	595.65	148.91	594.82	867.05	362.17	0.00	1566.55	1510.32	0.380	0.50	0.70	4.283	A
3	North	299.48	74.87	299.23	528.81	428.81	0.00	1537.29	1189.09	0.195	0.19	0.25	3.030	A
3	West	802.64	200.66	801.23	450.83	277.21	0.00	1635.31	1136.59	0.491	0.73	1.08	4.896	A
3	South	278.56	69.64	278.17	126.48	951.96	0.00	1199.03	661.49	0.232	0.22	0.32	4.170	A
3	East	595.65	148.91	594.84	867.35	362.78	0.00	1579.99	1338.57	0.377	0.49	0.70	4.225	А

Main results: (08:45-09:00)

Intersection	Leg	Total Demand (PCE/hr)	Intersection Arrivals (PCE)	Entry Flow (PCE/hr)	Exit Flow (PCE/hr)	Circulating Flow (PCE/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCE/hr)	Saturation Capacity (PCE/hr)	V/C Ratio	Start Queue (PCE)	End Queue (PCE)	Delay (s)	LOS
1	North	299.48	74.87	299.47	529.46	429.33	0.00	973.22	840.41	0.308	0.46	0.46	5.568	Α
1	West	802.64	200.66	802.23	451.35	277.44	0.00	1061.13	793.97	0.756	3.31	3.41	15.729	С
1	South	278.56	69.64	278.51	126.60	953.07	0.00	670.10	497.51	0.416	0.74	0.75	9.807	Α
1	East	595.65	148.91	595.56	868.35	363.23	0.00	1011.48	907.06	0.589	1.61	1.63	10.010	В
2	North	299.48	74.87	299.47	529.56	429.39	0.00	982.12	631.06	0.305	0.45	0.46	5.495	Α
2	West	802.64	200.66	802.62	451.41	277.45	0.00	1624.56	1405.16	0.494	1.10	1.10	4.975	Α
2	South	278.56	69.64	278.53	126.61	953.46	0.00	689.70	256.59	0.404	0.71	0.72	9.342	Α
2	East	595.65	148.91	595.64	868.68	363.31	0.00	1565.77	1510.32	0.380	0.70	0.71	4.294	Α
3	North	299.48	74.87	299.48	529.58	429.39	0.00	1536.92	1189.09	0.195	0.25	0.25	3.031	Α
3	West	802.64	200.66	802.62	451.41	277.45	0.00	1635.15	1136.59	0.491	1.08	1.09	4.912	Α
3	South	278.56	69.64	278.55	126.62	953.46	0.00	1198.06	661.49	0.233	0.32	0.32	4.178	A
3	East	595.65	148.91	595.64	868.68	363.33	0.00	1579.63	1338.57	0.377	0.70	0.70	4.233	A

Main results: (09:00-09:15)

Intersection	Leg	Total Demand (PCE/hr)	Intersection Arrivals (PCE)	Entry Flow (PCE/hr)	Exit Flow (PCE/hr)	Circulating Flow (PCE/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCE/hr)	Saturation Capacity (PCE/hr)	V/C Ratio	Start Queue (PCE)	End Queue (PCE)	Delay (s)	LOS
1	North	244.52	61.13	245.04	435.17	352.39	0.00	1017.75	840.41	0.240	0.46	0.33	4.860	Α
1	West	655.36	163.84	661.97	370.33	227.10	0.00	1090.27	793.97	0.601	3.41	1.76	9.691	Α
1	South	227.44	56.86	228.63	103.80	785.27	0.00	767.22	497.51	0.296	0.75	0.45	7.150	Α
1	East	486.35	121.59	488.83	715.16	298.74	0.00	1048.80	907.06	0.464	1.63	1.02	7.471	Α
2	North	244.52	61.13	245.03	433.74	351.24	0.00	1025.72	631.06	0.238	0.46	0.33	4.808	Α
2	West	655.36	163.84	656.78	369.27	227.00	0.00	1659.11	1405.16	0.395	1.10	0.75	4.087	Α
2	South	227.44	56.86	228.55	103.59	780.19	0.00	786.38	256.59	0.289	0.72	0.44	6.900	Α
2	East	486.35	121.59	487.16	710.93	297.82	0.00	1610.62	1510.32	0.302	0.71	0.50	3.710	Α
3	North	244.52	61.13	244.77	433.18	351.18	0.00	1587.49	1189.09	0.154	0.25	0.19	2.796	Α
3	West	655.36	163.84	656.75	369.16	226.79	0.00	1667.92	1136.59	0.393	1.09	0.74	4.051	Α
3	South	227.44	56.86	227.83	103.52	780.02	0.00	1310.21	661.49	0.174	0.32	0.23	3.549	Α
3	East	486.35	121.59	487.15	710.63	297.22	0.00	1622.38	1338.57	0.300	0.70	0.50	3.674	Α

Main results: (09:15-09:30)

Intersection	Leg	Total Demand (PCE/hr)	Intersection Arrivals (PCE)	Entry Flow (PCE/hr)	Exit Flow (PCE/hr)	Circulating Flow (PCE/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCE/hr)	Saturation Capacity (PCE/hr)	V/C Ratio	Start Queue (PCE)	End Queue (PCE)	Delay (s)	LOS
1	North	204.78	51.19	205.09	363.34	294.49	0.00	1051.26	840.41	0.195	0.33	0.25	4.435	Α
1	West	548.83	137.21	551.35	309.54	190.04	0.00	1111.71	793.97	0.494	1.76	1.12	7.330	Α
1	South	190.47	47.62	191.03	86.78	654.61	0.00	842.84	497.51	0.226	0.45	0.31	5.901	A
1	East	407.29	101.82	408.51	596.32	249.32	0.00	1077.40	907.06	0.378	1.02	0.71	6.241	A
2	North	204.78	51.19	205.08	362.80	293.98	0.00	1057.67	631.06	0.194	0.33	0.25	4.401	A
2	West	548.83	137.21	549.61	309.07	190.00	0.00	1684.45	1405.16	0.326	0.75	0.55	3.605	A
2	South	190.47	47.62	191.00	86.70	652.91	0.00	857.40	256.59	0.222	0.44	0.31	5.771	A
2	East	407.29	101.82	407.78	594.90	249.01	0.00	1644.04	1510.32	0.248	0.50	0.38	3.373	A
3	North	204.78	51.19	204.93	362.56	293.95	0.00	1624.49	1189.09	0.126	0.19	0.15	2.644	A
3	West	548.83	137.21	549.60	309.01	189.87	0.00	1691.78	1136.59	0.324	0.74	0.55	3.582	A
3	South	190.47	47.62	190.69	86.66	652.81	0.00	1392.46	661.49	0.137	0.23	0.17	3.196	A
3	East	407.29	101.82	407.77	594.75	248.75	0.00	1653.71	1338.57	0.246	0.50	0.38	3.344	Α

Queueing Delay Results for each time segment

Queueing Delay results: (08:00-08:15)

Intersection	Leg	Queueing Total Delay (PCE-min)	Queueing Rate Of Delay (PCE- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
1	North	3.66	0.24	4.415	А	А
1	West	15.56	1.04	7.148	А	А
1	South	4.46	0.30	5.829	А	А
1	East	10.02	0.67	6.153	A	A
2	North	3.64	0.24	4.385	А	А
2	West	7.99	0.53	3.587	А	А
2	South	4.38	0.29	5.722	A	А
2	East	5.56	0.37	3.356	A	A
3	North	2.21	0.15	2.638	A	A
3	West	7.94	0.53	3.565	A	A
3	South	2.48	0.17	3.187	А	А
3	East	5.52	0.37	3.331	А	А

Queueing Delay results: (08:15-08:30)

Intersection	Leg	Queueing Total Delay (PCE-min)	Queueing Rate Of Delay (PCE- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
1	North	4.81	0.32	4.838	A	A
1	West	23.86	1.59	9.294	A	A
1	South	6.43	0.43	7.033	A	A
1	East	14.27	0.95	7.355	A	A
2	North	4.77	0.32	4.794	A	A
2	West	10.82	0.72	4.067	A	A
2	South	6.26	0.42	6.844	A	A
2	East	7.34	0.49	3.697	A	A
3	North	2.80	0.19	2.791	A	A
3	West	10.74	0.72	4.033	A	A
3	South	3.29	0.22	3.542	A	A
3	East	7.27	0.48	3.661	A	A

Queueing Delay results: (08:30-08:45)

Intersection	Leg	Queueing Total Delay (PCE-min)	Queueing Rate Of Delay (PCE- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
1	North	6.72	0.45	5.551	A	A
1	West	45.10	3.01	15.046	С	В
1	South	10.63	0.71	9.664	A	A
1	East	22.97	1.53	9.871	A	A
2	North	6.64	0.44	5.486	A	A
2	West	16.01	1.07	4.956	A	A
2	South	10.23	0.68	9.276	A	A
2	East	10.35	0.69	4.283	A	A
3	North	3.72	0.25	3.030	A	A
3	West	15.82	1.05	4.896	A	A
3	South	4.73	0.32	4.170	A	A
3	East	10.21	0.68	4.225	A	A

Queueing Delay results: (08:45-09:00)

Intersection	Leg	Queueing Total Delay (PCE-min)	Queueing Rate Of Delay (PCE- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
1	North	6.90	0.46	5.568	A	A
1	West	50.52	3.37	15.729	С	В
1	South	11.20	0.75	9.807	A	A
1	East	24.39	1.63	10.010	В	В
2	North	6.82	0.45	5.495	A	A
2	West	16.52	1.10	4.975	A	A
2	South	10.71	0.71	9.342	A	A
2	East	10.60	0.71	4.294	A	A
3	North	3.77	0.25	3.031	A	A
3	West	16.31	1.09	4.912	A	A
3	South	4.83	0.32	4.178	A	A
3	East	10.45	0.70	4.233	A	A

Queueing Delay results: (09:00-09:15)

Interse	ection	Leg	Queueing Total Delay (PCE-min)	Queueing Rate Of Delay (PCE- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service

1	North	5.09	0.34	4.860	A .	A
1	West	27.95	1.86	9.691	А	A
1	South	7.05	0.47	7.150	A	A
1	East	15.85	1.06	7.471	A	A
2	North	5.03	0.34	4.808	A	A
2	West	11.47	0.76	4.087	A	A
2	South	6.80	0.45	6.900	A	A
2	East	7.70	0.51	3.710	A	A
3	North	2.89	0.19	2.796	A	A
3	West	11.37	0.76	4.051	A	A
3	South	3.44	0.23	3.549	A	A
3	East	7.61	0.51	3.674	A	A

Queueing Delay results: (09:15-09:30)

Intersection	Leg	Queueing Total Delay (PCE-min)	Queueing Rate Of Delay (PCE- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
1	North	3.87	0.26	4.435	A	А
1	West	17.56	1.17	7.330	A	A
1	South	4.83	0.32	5.901	A	А
1	East	10.98	0.73	6.241	A	A
2	North	3.84	0.26	4.401	A	A
2	West	8.44	0.56	3.605	A	A
2	South	4.72	0.31	5.771	A	A
2	East	5.84	0.39	3.373	A	A
3	North	2.29	0.15	2.644	A	A
3	West	8.38	0.56	3.582	A	А
3	South	2.58	0.17	3.196	A	A
3	East	5.79	0.39	3.344	A	A

Queue Variation Results for each time segment

Queue Variation results: (08:00-08:15)

Intersection	Leg	Mean (PCE)	Q05 (PCE)	Q50 (PCE)	Q90 (PCE)	Q95 (PCE)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
1	North	0.25	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	West	1.09	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	South	0.31	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	East	0.69	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	North	0.25	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	West	0.55	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	South	0.30	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	East	0.38	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	North	0.15	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	West	0.54	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	South	0.17	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	East	0.38	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A

Queue Variation results: (08:15-08:30)

Probability Of

Probability Of

Intersection	Leg	Mean (PCE)	Q05 (PCE)	Q50 (PCE)	Q90 (PCE)	Q95 (PCE)	Percentile Message	Marker Message	Reaching Or Exceeding Marker	Exactly Reaching Marker
1	North	0.33	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	West	1.67	0.00	0.00	3.41	4.54			N/A	N/A
1	South	0.44	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A
1	East	0.98	0.00	0.00	0.00	1.16			N/A	N/A
2	North	0.32	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	West	0.74	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	South	0.43	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	East	0.50	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	North	0.19	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	West	0.73	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	South	0.22	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	East	0.49	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A

Queue Variation results: (08:30-08:45)

Intersection	Leg	Mean (PCE)	Q05 (PCE)	Q50 (PCE)	Q90 (PCE)	Q95 (PCE)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
1	North	0.46	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	West	3.31	0.00	0.00	2.27	10.23			N/A	N/A
1	South	0.74	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	East	1.61	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	North	0.45	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	West	1.10	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	South	0.71	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	East	0.70	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	North	0.25	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	West	1.08	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	South	0.32	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	East	0.70	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A

Queue Variation results: (08:45-09:00)

Intersection	Leg	Mean (PCE)	Q05 (PCE)	Q50 (PCE)	Q90 (PCE)	Q95 (PCE)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
1	North	0.46	0.00	0.00	0.00	1.04			N/A	N/A
1	West	3.41	0.00	0.00	0.00	5.68			N/A	N/A
1	South	0.75	0.00	0.00	0.00	1.07			N/A	N/A

1	East	1.63	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	N/A	N/A
2	North	0.46	0.00	0.00	0.00	1.04		N/A	N/A
2	West	1.10	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	N/A	N/A
2	South	0.72	0.00	0.00	0.00	1.07		N/A	N/A
2	East	0.71	0.00	0.00	0.00	1.16		N/A	N/A
3	North	0.25	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	N/A	N/A
3	West	1.09	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	N/A	N/A
3	South	0.32	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	N/A	N/A
3	East	0.70	0.00	0.00	0.00	1.16		N/A	N/A

Queue Variation results: (09:00-09:15)

Intersection	Leg	Mean (PCE)	Q05 (PCE)	Q50 (PCE)	Q90 (PCE)	Q95 (PCE)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
1	North	0.33	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	West	1.76	0.00	0.00	3.41	4.54			N/A	N/A
1	South	0.45	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	East	1.02	0.00	0.00	1.16	1.16			N/A	N/A
2	North	0.33	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	West	0.75	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	South	0.44	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	East	0.50	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	North	0.19	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	West	0.74	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	South	0.23	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	East	0.50	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A

Queue Variation results: (09:15-09:30)

Intersection	Leg	Mean (PCE)	Q05 (PCE)	Q50 (PCE)	Q90 (PCE)	Q95 (PCE)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
1	North	0.25	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	West	1.12	0.00	0.00	1.14	3.41			N/A	N/A
1	South	0.31	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	East	0.71	0.00	0.00	0.00	1.16			N/A	N/A
2	North	0.25	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	West	0.55	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	South	0.31	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	East	0.38	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A

3	North	0.15	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	N/A	N/A
3	West	0.55	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	N/A	N/A
3	South	0.17	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	N/A	N/A
3	East	0.38	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	N/A	N/A

Junctions 8

ARCADY 8 - Roundabout Module

Version: 8.0.6.541 [19821,26/11/2015] © Copyright TRL Limited, 2020

For sales and distribution information, program advice and maintenance, contact TRL: Tel: +44 (0)1344 770758 email: software@trl.co.uk Web: http://www.trlsoftware.co.uk

The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution

Filename: Alder and Riddell.arc8 Path: C:\Users\AdamMorrison\Desktop\Projects\200195 - Arcady Report generation date: 2020-08-25 8:02:53 PM

Summary of intersection performance

			Р	м								
	Queue (PCE)	95% Queue (PCE)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS					
		A1 - Background 2031										
Intersection 1 - Leg North	1.17	2.03	11.32	0.54	В							
Intersection 1 - Leg West	1.61	1.08	9.91	0.60	Α	E1 34	F					
Intersection 1 - Leg South	0.22	~1	5.49	0.18	A	51.34	F					
Intersection 1 - Leg East	29.95	90.68	91.40	1.02	F							
Intersection 2 - Leg North	1.17	2.03	11.27	0.54	В							
Intersection 2 - Leg West	0.68	1.08	4.15	0.39	Α	6 77						
Intersection 2 - Leg South	0.21	~1	5.36	0.18	A	0.77	A					
Intersection 2 - Leg East	2.16	3.16	6.80	0.67	Α							
Intersection 3 - Leg North	0.46	1.02	4.38	0.31	Α							
Intersection 3 - Leg West	0.67	1.08	4.08	0.38	Α							
Intersection 3 - Leg South	0.12	~1	3.00	0.11	Α	5.41	A					
Intersection 3 - Leg East	2.14	3.16	6.73	0.67	A							

Values shown are the maximum values over all time segments. Delay is the maximum value of average delay per arriving vehicle. Intersection LOS and Intersection Delay are demandweighted averages.

"D1 - Background 2031, PM " model duration: 4:00 PM - 5:30 PM "D2 - Background 2031, AM" model duration: 8:00 AM - 9:30 AM

Run using Junctions 8.0.6.541 at 2020-08-25 8:02:52 PM

File summary

Title	(untitled)
Location	
Site Number	
Date	2020-08-25
Version	
Status	(new file)
Identifier	
Client	
Jobnumber	
Analyst	AdamMorrison
Description	

Analysis Options

Vehicle Length	Do Queue	Calculate Residual	Residual Capacity Criteria	V/C Ratio	Average Delay Threshold	Queue Threshold
(m)	Variations	Capacity	Type	Threshold	(s)	(PCE)
5.75	✓		N/A	0.85	36.00	20.00

Units

Distance Units	Speed Units	Traffic Units Input	Traffic Units Results	Flow Units	Average Delay Units	Total Delay Units	Rate Of Delay Units
m	kph	PCE	PCE	perHour	s	-Min	perMin

(Default Analysis Set) - Background 2031, PM

Data Errors and Warnings

No errors or warnings

Analysis Set Details

Name	Roundabout Capacity Model	Description	Include In Report	Use Specific Demand Set(s)	Specific Demand Set(s)	Locked	Network Flow Scaling Factor (%)	Network Capacity Scaling Factor (%)	Reason For Scaling Factors
(Default Analysis Set)	ARCADY		~				100.000	100.000	

Demand Set Details

Name	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Results For Central Hour Only	Single Time Segment Only	Locked	Run Automatically	Use Relationship	Relationship
Background 2031, PM	Background 2031	PM		ONE HOUR	16:00	17:30	90	15				~		

Intersection Network

Intersections

Junction	Intersection	Name	Intersection Type	Leg Order	Grade Separated	Large Roundabout	Do Geometric Delay	Intersection Delay (s)	Intersection LOS
1	1	(untitled)	Roundabout	North,West,South,East				51.34	F
2	2	(untitled)	Roundabout	North,West,South,East				6.77	А
3	3	(untitled)	Roundabout	North,West,South,East				5.41	A

Intersection Network Options

Driving Side	Lighting
Right	Normal/unknown

Legs

Legs

Intersection	Leg	Leg	Name	Description
1	North	North	Alder Street	
1	West	West	Riddell Road	
1	South	South	Alder Street	
1	East	East	Riddell Road	
2	North	North	Alder Street	
2	West	West	Riddell Road	
2	South	South	Alder Street	
2	East	East	Riddell Road	
3	North	North	Alder Street	
3	West	West	Riddell Road	
3	South	South	Alder Street	
3	East	East	Riddell Road	

Capacity Options

Intersection	Leg	Minimum Capacity (PCE/hr)	Maximum Capacity (PCE/hr)	Assume Flat Start Profile	Initial Queue (PCE)
1	North	0.00	99999.00		0.00
1	West	0.00	99999.00		0.00
1	South	0.00	99999.00		0.00
1	East	0.00	99999.00		0.00
2	North	0.00	99999.00		0.00

2	West	0.00	99999.00	0.00
2	South	0.00	99999.00	0.00
2	East	0.00	99999.00	0.00
3	North	0.00	99999.00	0.00
3	West	0.00	99999.00	0.00
3	South	0.00	99999.00	0.00
3	East	0.00	99999.00	0.00

Roundabout Geometry

Intersection	Leg	V - Approach road half- width (m)	E - Entry width (m)	l' - Effective flare length (m)	R - Entry radius (m)	D - Inscribed circle diameter (m)	PHI - Conflict (entry) angle (deg)	Exit Only
1	North	3.50	4.50	30.00	20.00	40.00	25.00	
1	West	3.50	4.50	30.00	20.00	40.00	25.00	
1	South	3.50	4.50	30.00	20.00	40.00	25.00	
1	East	3.50	4.50	30.00	20.00	40.00	25.00	
2	North	3.50	4.50	30.00	20.00	47.50	25.00	
2	West	3.50	8.00	30.00	20.00	47.50	25.00	
2	South	3.50	4.50	30.00	20.00	47.50	25.00	
2	East	3.50	8.00	30.00	20.00	47.50	25.00	
3	North	3.50	8.00	30.00	20.00	55.00	25.00	
3	West	3.50	8.00	30.00	20.00	55.00	25.00	
3	South	3.50	8.00	30.00	20.00	55.00	25.00	
3	East	3.50	8.00	30.00	20.00	55.00	25.00	

Slope / Intercept / Capacity

Leg Intercept Adjustments

Intersection	Leg	Туре	Reason	Direct Intercept Adjustment (PCE/hr)	Percentage Intercept Adjustment (%)
1	North	Percentage	Region of Waterloo Standard		90.00
1	West	Percentage	Region of Waterloo Standard		90.00
1	South	Percentage	Region of Waterloo Standard		90.00
1	East	Percentage	Region of Waterloo Standard		90.00
2	North	Percentage	Region of Waterloo Standard		90.00
2	West	Percentage	Region of Waterloo Standard		90.00
2	South	Percentage	Region of Waterloo Standard		90.00
2	East	Percentage	Region of Waterloo Standard		90.00
3	North	Percentage	Region of Waterloo Standard		90.00
3	West	Percentage	Region of Waterloo Standard		90.00
3	South	Percentage	Region of Waterloo Standard		90.00
3	East	Percentage	Region of Waterloo Standard		90.00

Roundabout Slope and Intercept used in model

Intersection	Leg	Enter slope and intercept directly	Entered slope	Entered intercept (PCE/hr)	Final Slope	Final Intercept (PCE/hr)
1	North		(calculated)	(calculated)	0.579	1221.701
1	West		(calculated)	(calculated)	0.579	1221.701
1	South		(calculated)	(calculated)	0.579	1221.701
1	East		(calculated)	(calculated)	0.579	1221.701
2	North		(calculated)	(calculated)	0.558	1221.701
2	West		(calculated)	(calculated)	0.685	1814.551
2	South		(calculated)	(calculated)	0.558	1221.701
2	East		(calculated)	(calculated)	0.685	1814.551
3	North		(calculated)	(calculated)	0.647	1814.551
3	West		(calculated)	(calculated)	0.647	1814.551
3	South		(calculated)	(calculated)	0.647	1814.551
3	East		(calculated)	(calculated)	0.647	1814.551

The slope and intercept shown above include any corrections and adjustments.

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCE Factor for a Truck (PCE)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
---------------------------	------------------------------------	------------------------------------	-------------------------------------	-----------------------	------------------------------------	-----------------------------------	---------------------------------------	--	--	---

Image: Constraint of the second se			\checkmark	✓	Truck Percentages	2.00				~	~
---	--	--	--------------	---	----------------------	------	--	--	--	---	---

Entry Flows

General Flows Data

Intersection	Leg	Profile Type	Use Turning Counts	Average Demand Flow (PCE/hr)	Flow Scaling Factor (%)
1	North	ONE HOUR	✓	345.00	100.000
1	West	ONE HOUR	✓	537.00	100.000
1	South	ONE HOUR	~	130.00	100.000
1	East	ONE HOUR	~	1049.00	100.000
2	North	ONE HOUR	✓	345.00	100.000
2	West	ONE HOUR	✓	537.00	100.000
2	South	ONE HOUR	~	130.00	100.000
2	East	ONE HOUR	✓	1049.00	100.000
3	North	ONE HOUR	✓	345.00	100.000
3	West	ONE HOUR	✓	537.00	100.000
3	South	ONE HOUR	1	130.00	100.000
3	East	ONE HOUR	1	1049.00	100.000

Turning Proportions

Turning Counts / Proportions (PCE/hr) - Intersection 1 (for whole period)

	То					
		North	West	South	East	
	North	0.000	63.000	122.000	160.000	
From	West	44.000	0.000	34.000	459.000	
	South	72.000	19.000	0.000	39.000	
	East	225.000	731.000	93.000	0.000	

Turning Proportions (PCE) - Intersection 1 (for whole period)

	То					
		North	West	South	East	
	North	0.00	0.18	0.35	0.46	
From	West	0.08	0.00	0.06	0.85	
	South	0.55	0.15	0.00	0.30	
	East	0.21	0.70	0.09	0.00	

Turning Counts / Proportions (PCE/hr) - Intersection 2 (for whole period)

	То					
		North	West	South	East	
From	North	0.000	63.000	122.000	160.000	
	West	44.000	0.000	34.000	459.000	
	South	72.000	19.000	0.000	39.000	
	East	225.000	731.000	93.000	0.000	

Turning Proportions (PCE) - Intersection 2 (for whole period)

	То					
		North	West	South	East	
	North	0.00	0.18	0.35	0.46	
From	West	0.08	0.00	0.06	0.85	
	South	0.55	0.15	0.00	0.30	
	East	0.21	0.70	0.09	0.00	

Turning Counts / Proportions (PCE/hr) - Intersection 3 (for whole period)

То							
	North	West	South	East			
North	0.000	63.000	122.000	160.000			

		West	44.000	0.000	34.000	459.000
	From	South	72.000	19.000	0.000	39.000
		East	225.000	731.000	93.000	0.000

Turning Proportions (PCE) - Intersection 3 (for whole period)

	То					
		North	West	South	East	
	North	0.00	0.18	0.35	0.46	
From	West	0.08	0.00	0.06	0.85	
	South	0.55	0.15	0.00	0.30	
	East	0.21	0.70	0.09	0.00	

Vehicle Mix

Average PCE Per Vehicle - Intersection 1 (for whole period)

	То					
		North	West	South	East	
	North	1.000	1.060	1.000	1.010	
From	West	1.000	1.000	1.000	1.100	
	South	1.000	1.000	1.000	1.000	
	East	1.000	1.080	1.000	1.000	

Truck Percentages - Intersection 1 (for whole period)

	То					
		North	West	South	East	
	North	0.0	6.0	0.0	1.0	
From	West	0.0	0.0	0.0	10.0	
	South	0.0	0.0	0.0	0.0	
	East	0.0	8.0	0.0	0.0	

Average PCE Per Vehicle - Intersection 2 (for whole period)

	То					
		North	West	South	East	
	North	1.000	1.060	1.000	1.010	
From	West	1.000	1.000	1.000	1.100	
	South	1.000	1.000	1.000	1.000	
	East	1.000	1.080	1.000	1.000	

Truck Percentages - Intersection 2 (for whole period)

			То		
		North	West	South	East
	North	0.0	6.0	0.0	1.0
From	West	0.0	0.0	0.0	10.0
	South	0.0	0.0	0.0	0.0
	East	0.0	8.0	0.0	0.0

Average PCE Per Vehicle - Intersection 3 (for whole period)

		То												
		North	West	South	East									
	North	1.000	1.060	1.000	1.010									
From	West	1.000	1.000	1.000	1.100									
	South	1.000	1.000	1.000	1.000									
	East	1.000	1.080	1.000	1.000									

Truck Percentages - Intersection 3 (for whole period)

			То		
		North	West	South	East
	North	0.0	6.0	0.0	1.0
From	West	0.0	0.0	0.0	10.0
	South	0.0	0.0	0.0	0.0
	East	0.0	8.0	0.0	0.0

Results

Results Summary for whole modelled period

Intersection	Leg	Max V/C Ratio	Max Delay (s)	Max Queue (PCE)	Max 95th percentile Queue (PCE)	Max LOS	Average Demand (PCE/hr)	Total Intersection Arrivals (PCE)	Total Queueing Delay (PCE- min)	Average Queueing Delay (s)	Rate Of Queueing Delay (PCE- min/min)	Inclusive Total Queueing Delay (PCE- min)	Inclusive Average Queueing Delay (s)
1	North	0.54	11.32	1.17	2.03	В	316.58	474.87	67.88	8.58	0.75	67.89	8.58
1	West	0.60	9.91	1.61	1.08	A	492.76	739.14	95.62	7.76	1.06	95.64	7.76
1	South	0.18	5.49	0.22	~1	A	119.29	178.94	14.55	4.88	0.16	14.55	4.88
1	East	1.02	91.40	29.95	90.68	F	962.58	1443.87	899.91	37.40	10.00	900.05	37.40
2	North	0.54	11.27	1.17	2.03	В	316.58	474.87	66.31	8.38	0.74	66.32	8.38
2	West	0.39	4.15	0.68	1.08	Α	492.76	739.14	45.16	3.67	0.50	45.16	3.67
2	South	0.18	5.36	0.21	~1	Α	119.29	178.94	14.30	4.79	0.16	14.30	4.79
2	East	0.67	6.80	2.16	3.16	A	962.58	1443.87	126.85	5.27	1.41	126.86	5.27
3	North	0.31	4.38	0.46	1.02	A	316.58	474.87	29.84	3.77	0.33	29.84	3.77
3	West	0.38	4.08	0.67	1.08	Α	492.76	739.14	44.58	3.62	0.50	44.58	3.62
3	South	0.11	3.00	0.12	~1	Α	119.29	178.94	8.32	2.79	0.09	8.32	2.79
3	East	0.67	6.73	2.14	3.16	A	962.58	1443.87	125.93	5.23	1.40	125.94	5.23

Main Results for each time segment

Main results: (16:00-16:15)

Intersection	Leg	Total Demand (PCE/hr)	Intersection Arrivals (PCE)	Entry Flow (PCE/hr)	Exit Flow (PCE/hr)	Circulating Flow (PCE/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCE/hr)	Saturation Capacity (PCE/hr)	V/C Ratio	Start Queue (PCE)	End Queue (PCE)	Delay (s)	LOS
1	North	259.73	64.93	257.99	254.40	627.81	0.00	858.35	741.47	0.303	0.00	0.44	6.070	Α
1	West	404.28	101.07	401.63	605.67	280.13	0.00	1059.57	822.24	0.382	0.00	0.66	5.909	Α
1	South	97.87	24.47	97.41	185.91	495.85	0.00	934.72	576.93	0.105	0.00	0.12	4.298	Α
1	East	789.74	197.44	781.12	492.17	101.09	0.00	1163.19	948.97	0.679	0.00	2.16	9.729	Α
2	North	259.73	64.93	258.02	255.61	631.87	0.00	869.14	505.46	0.299	0.00	0.43	5.963	Α
2	West	404.28	101.07	402.85	609.28	280.61	0.00	1622.40	1436.27	0.249	0.00	0.36	3.198	Α
2	South	97.87	24.47	97.41	186.46	497.00	0.00	944.39	340.25	0.104	0.00	0.12	4.249	Α
2	East	789.74	197.44	786.28	493.22	101.20	0.00	1745.26	1570.87	0.453	0.00	0.86	3.944	Α
3	North	259.73	64.93	258.82	255.71	631.91	0.00	1405.97	1031.22	0.185	0.00	0.23	3.182	Α
3	West	404.28	101.07	402.86	609.46	281.27	0.00	1632.69	1189.51	0.248	0.00	0.36	3.171	Α
3	South	97.87	24.47	97.59	186.74	497.39	0.00	1492.95	784.91	0.066	0.00	0.07	2.579	Α
3	East	789.74	197.44	786.30	493.65	101.32	0.00	1749.04	1396.28	0.452	0.00	0.86	3.928	Α

Main results: (16:15-16:30)

Intersection	Leg	Total Demand (PCE/hr)	Intersection Arrivals (PCE)	Entry Flow (PCE/hr)	Exit Flow (PCE/hr)	Circulating Flow (PCE/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCE/hr)	Saturation Capacity (PCE/hr)	V/C Ratio	Start Queue (PCE)	End Queue (PCE)	Delay (s)	LOS
1	North	310.15	77.54	309.29	304.50	750.95	0.00	787.08	741.47	0.394	0.44	0.65	7.634	A
1	West	482.75	120.69	481.61	724.60	335.64	0.00	1027.45	822.24	0.470	0.66	0.95	7.137	A
1	South	116.87	29.22	116.72	222.69	594.56	0.00	877.60	576.93	0.133	0.12	0.15	4.731	A
1	East	943.03	235.76	934.29	590.11	121.17	0.00	1151.57	948.97	0.819	2.16	4.34	16.806	С
2	North	310.15	77.54	309.32	306.11	756.62	0.00	799.53	505.46	0.388	0.43	0.63	7.443	A
2	West	482.75	120.69	482.29	729.63	336.31	0.00	1584.26	1436.27	0.305	0.36	0.47	3.539	A
2	South	116.87	29.22	116.73	223.39	595.21	0.00	889.59	340.25	0.131	0.12	0.15	4.658	A
2	East	943.03	235.76	941.50	590.71	121.23	0.00	1731.54	1570.87	0.545	0.86	1.25	4.793	A
3	North	310.15	77.54	309.83	306.15	756.64	0.00	1325.32	1031.22	0.234	0.23	0.31	3.599	A
3	West	482.75	120.69	482.30	729.75	336.72	0.00	1596.83	1189.51	0.302	0.36	0.47	3.500	A
3	South	116.87	29.22	116.79	223.57	595.46	0.00	1429.54	784.91	0.082	0.07	0.09	2.741	A
3	East	943.03	235.76	941.52	590.98	121.27	0.00	1736.14	1396.28	0.543	0.86	1.24	4.768	A

Main results: (16:30-16:45)

Intersection	Leg	Total Demand (PCE/hr)	Intersection Arrivals (PCE)	Entry Flow (PCE/hr)	Exit Flow (PCE/hr)	Circulating Flow (PCE/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCE/hr)	Saturation Capacity (PCE/hr)	V/C Ratio	Start Queue (PCE)	End Queue (PCE)	Delay (s)	LOS
					1									1 1

1	North	379.85	94.96	377.95	361.49	878.27	0.00	713.40	741.47	0.532	0.65	1.13	10.832	В
1	West	591.25	147.81	588.72	850.51	405.70	0.00	986.90	822.24	0.599	0.95	1.58	9.739	A
1	South	143.13	35.78	142.88	267.69	726.73	0.00	801.10	576.93	0.179	0.15	0.22	5.469	Α
1	East	1154.97	288.74	1091.50	721.35	148.25	0.00	1135.90	948.97	1.017	4.34	20.21	53.020	F
2	North	379.85	94.96	377.77	374.48	925.33	0.00	705.39	505.46	0.539	0.63	1.15	11.085	В
2	West	591.25	147.81	590.44	892.24	410.87	0.00	1533.20	1436.27	0.386	0.47	0.68	4.137	Α
2	South	143.13	35.78	142.89	273.05	728.25	0.00	815.36	340.25	0.176	0.15	0.21	5.352	Α
2	East	1154.97	288.74	1151.42	722.74	148.40	0.00	1712.93	1570.87	0.674	1.25	2.13	6.717	Α
3	North	379.85	94.96	379.25	374.57	925.39	0.00	1216.21	1031.22	0.312	0.31	0.46	4.364	A
3	West	591.25	147.81	590.46	892.56	412.08	0.00	1548.11	1189.51	0.382	0.47	0.67	4.072	Α
3	South	143.13	35.78	143.01	273.58	728.96	0.00	1343.22	784.91	0.107	0.09	0.12	2.999	Α
3	East	1154.97	288.74	1151.47	723.48	148.49	0.00	1718.54	1396.28	0.672	1.24	2.11	6.653	Α

Main results: (16:45-17:00)

Intersection	Leg	Total Demand (PCE/hr)	Intersection Arrivals (PCE)	Entry Flow (PCE/hr)	Exit Flow (PCE/hr)	Circulating Flow (PCE/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCE/hr)	Saturation Capacity (PCE/hr)	V/C Ratio	Start Queue (PCE)	End Queue (PCE)	Delay (s)	LOS
1	North	379.85	94.96	379.67	367.08	897.54	0.00	702.24	741.47	0.541	1.13	1.17	11.317	В
1	West	591.25	147.81	591.14	867.93	409.28	0.00	984.83	822.24	0.600	1.58	1.61	9.909	A
1	South	143.13	35.78	143.13	270.63	729.79	0.00	799.33	576.93	0.179	0.22	0.22	5.485	Α
1	East	1154.97	288.74	1115.99	724.29	148.63	0.00	1135.68	948.97	1.017	20.21	29.95	91.403	F
2	North	379.85	94.96	379.78	375.42	928.09	0.00	703.86	505.46	0.540	1.15	1.17	11.269	В
2	West	591.25	147.81	591.24	895.05	412.81	0.00	1531.87	1436.27	0.386	0.68	0.68	4.149	Α
2	South	143.13	35.78	143.13	274.12	729.93	0.00	814.42	340.25	0.176	0.21	0.21	5.362	Α
2	East	1154.97	288.74	1154.88	724.42	148.63	0.00	1712.77	1570.87	0.674	2.13	2.16	6.801	Α
3	North	379.85	94.96	379.84	375.43	928.09	0.00	1214.47	1031.22	0.313	0.46	0.46	4.378	Α
3	West	591.25	147.81	591.24	895.06	412.87	0.00	1547.60	1189.51	0.382	0.67	0.67	4.081	Α
3	South	143.13	35.78	143.13	274.14	729.96	0.00	1342.57	784.91	0.107	0.12	0.12	3.000	Α
3	East	1154.97	288.74	1154.88	724.46	148.64	0.00	1718.45	1396.28	0.672	2.11	2.14	6.733	A

Main results: (17:00-17:15)

Intersection	Leg	Total Demand (PCE/hr)	Intersection Arrivals (PCE)	Entry Flow (PCE/hr)	Exit Flow (PCE/hr)	Circulating Flow (PCE/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCE/hr)	Saturation Capacity (PCE/hr)	V/C Ratio	Start Queue (PCE)	End Queue (PCE)	Delay (s)	LOS
1	North	310.15	77.54	311.86	327.84	834.61	0.00	738.66	741.47	0.420	1.17	0.75	8.598	Α
1	West	482.75	120.69	485.22	799.29	347.18	0.00	1020.77	822.24	0.473	1.61	0.99	7.320	Α
1	South	116.87	29.22	117.12	233.27	599.13	0.00	874.95	576.93	0.134	0.22	0.16	4.751	Α
1	East	943.03	235.76	1040.71	594.51	121.74	0.00	1151.24	948.97	0.819	29.95	5.53	47.088	E
2	North	310.15	77.54	312.22	307.51	760.65	0.00	797.28	505.46	0.389	1.17	0.65	7.564	Α
2	West	482.75	120.69	483.55	733.74	339.12	0.00	1582.33	1436.27	0.305	0.68	0.48	3.556	Α
2	South	116.87	29.22	117.11	224.94	597.73	0.00	888.18	340.25	0.132	0.21	0.15	4.671	Α
2	East	943.03	235.76	946.56	593.25	121.60	0.00	1731.29	1570.87	0.545	2.16	1.28	4.858	Α
3	North	310.15	77.54	310.74	307.43	760.59	0.00	1322.77	1031.22	0.234	0.46	0.31	3.612	Α
3	West	482.75	120.69	483.53	733.42	337.91	0.00	1596.07	1189.51	0.302	0.67	0.47	3.512	Α
3	South	116.87	29.22	116.99	224.41	597.03	0.00	1428.52	784.91	0.082	0.12	0.09	2.744	Α
3	East	943.03	235.76	946.51	592.50	121.51	0.00	1735.99	1396.28	0.543	2.14	1.27	4.828	Α

Main results: (17:15-17:30)

Intersection	Leg	Total Demand (PCE/hr)	Intersection Arrivals (PCE)	Entry Flow (PCE/hr)	Exit Flow (PCE/hr)	Circulating Flow (PCE/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCE/hr)	Saturation Capacity (PCE/hr)	V/C Ratio	Start Queue (PCE)	End Queue (PCE)	Delay (s)	LOS
1	North	259.73	64.93	260.91	259.67	644.81	0.00	848.51	741.47	0.306	0.75	0.45	6.233	A
1	West	404.28	101.07	405.52	621.29	284.42	0.00	1057.09	822.24	0.382	0.99	0.68	6.003	Α
1	South	97.87	24.47	98.02	189.10	500.84	0.00	931.83	576.93	0.105	0.16	0.12	4.317	A
1	East	789.74	197.44	802.64	497.02	101.84	0.00	1162.76	948.97	0.679	5.53	2.31	10.892	В
2	North	259.73	64.93	260.60	257.18	635.92	0.00	866.87	505.46	0.300	0.65	0.44	6.035	A
2	West	404.28	101.07	404.75	613.36	283.17	0.00	1620.65	1436.27	0.249	0.48	0.36	3.210	A
2	South	97.87	24.47	98.01	187.94	499.98	0.00	942.73	340.25	0.104	0.15	0.12	4.262	A
2	East	789.74	197.44	791.33	496.22	101.77	0.00	1744.86	1570.87	0.453	1.28	0.88	3.987	A
3	North	259.73	64.93	260.06	257.14	635.90	0.00	1403.39	1031.22	0.185	0.31	0.23	3.196	A
3	West	404.28	101.07	404.74	613.24	282.72	0.00	1631.75	1189.51	0.248	0.47	0.36	3.181	A
3	South	97.87	24.47	97.95	187.74	499.72	0.00	1491.44	784.91	0.066	0.09	0.07	2.583	Α
3	East	789.74	197.44	791.31	495.94	101.73	0.00	1748.78	1396.28	0.452	1.27	0.88	3.970	Α

Queueing Delay Results for each time segment

Queueing Delay results: (16:00-16:15)

Intersection	Leg	Queueing Total Delay (PCE-min)	Queueing Rate Of Delay (PCE- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
1	North	6.32	0.42	6.070	А	А
1	West	9.57	0.64	5.909	А	А
1	South	1.71	0.11	4.298	А	А
1	East	29.84	1.99	9.729	А	А
2	North	6.21	0.41	5.963	А	А
2	West	5.26	0.35	3.198	А	А
2	South	1.69	0.11	4.249	А	А
2	East	12.59	0.84	3.944	А	А
3	North	3.37	0.22	3.182	А	А
3	West	5.22	0.35	3.171	А	А
3	South	1.03	0.07	2.579	A	A
3	East	12.54	0.84	3.928	A	A

Queueing Delay results: (16:15-16:30)

Intersection	Leg	Queueing Total Delay (PCE-min)	Queueing Rate Of Delay (PCE- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
1	North	9.46	0.63	7.634	А	A
1	West	13.75	0.92	7.137	A	A
1	South	2.25	0.15	4.731	А	A
1	East	58.02	3.87	16.806	С	В
2	North	9.23	0.62	7.443	А	А
2	West	6.97	0.47	3.539	А	A
2	South	2.22	0.15	4.658	А	A
2	East	18.18	1.21	4.793	А	A
3	North	4.56	0.30	3.599	А	A
3	West	6.90	0.46	3.500	А	A
3	South	1.32	0.09	2.741	A	A
3	East 18.08 1.		1.21	4.768	A	A

Queueing Delay results: (16:30-16:45)

Intersection	Leg	Queueing Total Delay (PCE-min)	Queueing Rate Of Delay (PCE- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
1	North	16.06	1.07	10.832	В	В
1	West	22.48	1.50	9.739	A	А
1	South	3.17	0.21	5.469	A	А
1	East	203.41	13.56	53.020	F	D
2	North	16.40	1.09	11.085	В	В
2	West	9.92	0.66	4.137	A	А
2	South	3.11	0.21	5.352	A	А
2	East	30.53	2.04	6.717	A	А
3	North	6.73	0.45	4.364	A	А
3	West	9.77	0.65	4.072	A	А
3	South	1.76	0.12	2.999	A	А
3	East	30.25	2.02	6.653	A	A

Queueing Delay results: (16:45-17:00)

Intersection	Leg	Queueing Total Delay (PCE-min)	Queueing Rate Of Delay (PCE- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
1	North	17.39	1.16	11.317	В	В
1	West	23.93	1.60	9.909	A	A
1	South	3.25	0.22	5.485	A	A
1	East	378.97	25.26	91.403	F	F
2	North	17.49	1.17	11.269	В	В
2	West	10.16	0.68	4.149	A	A
2	South	3.18	0.21	5.362	A	A
2	East	32.24	2.15	6.801	A	A
3	North	6.89	0.46	4.378	A	A
3	West	10.00	0.67	4.081	A	A
3	South	1.78	0.12	3.000	A	A
3	East	31.92	2.13	6.733	A	A

Queueing Delay results: (17:00-17:15)

Intersection	Leg	Queueing Total Delay (PCE-min)	Queueing Rate Of Delay (PCE- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service

1	North	11.66	0.78	8.598	A	A
1	West	15.41	1.03	7.320	A	A
1	South	2.37	0.16	4.751	A	А
1	East	191.65	12.78	47.088	E	D
2	North	10.22	0.68	7.564	A	А
2	West	7.31	0.49	3.556	A	А
2	South	2.33	0.16	4.671	A	А
2	East	19.81	1.32	4.858	A	А
3	North	4.77	0.32	3.612	A	А
3	West	7.22	0.48	3.512	A	A
3	South	1.36	0.09	2.744	A	A
3	East	19.68	1.31	4.828	A	A

Queueing Delay results: (17:15-17:30)

Intersection	Leg	Queueing Total Delay (PCE-min)	Queueing Rate Of Delay (PCE- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
1	North	6.99	0.47	6.233	A	А
1	West	10.48	0.70	6.003	A	A
1	South	1.80	0.12	4.317	A	А
1	East	38.02	2.53	10.892	В	В
2	North	6.76	0.45	6.035	A	A
2	West	5.51	0.37	3.210	A	A
2	South	1.78	0.12	4.262	A	А
2	East	13.50	0.90	3.987	A	A
3	North	3.52	0.23	3.196	A	A
3	West	5.46	0.36	3.181	A	A
3	South	1.07	0.07	2.583	A	A
3	East	13.44	0.90	3.970	A	A

Queue Variation Results for each time segment

Queue Variation results: (16:00-16:15)

Intersection	Leg	Mean (PCE)	Q05 (PCE)	Q50 (PCE)	Q90 (PCE)	Q95 (PCE)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
1	North	0.44	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	West	0.66	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	South	0.12	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	East	2.16	0.00	1.05	3.16	3.16			N/A	N/A
2	North	0.43	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	West	0.36	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	South	0.12	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	East	0.86	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	North	0.23	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	West	0.36	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	South	0.07	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	East	0.86	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A

Queue Variation results: (16:15-16:30)

	Intersection	Leg	Mean (PCE)	Q05 (PCE)	Q50 (PCE)	Q90 (PCE)	Q95 (PCE)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker	
ļ				1	1	1	1			1 1		1

1	North	0.65	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	N/A	N/A
1	West	0.95	0.00	0.00	1.08	1.08		N/A	N/A
1	South	0.15	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	N/A	N/A
1	East	4.34	0.00	0.00	10.54	14.76		N/A	N/A
2	North	0.63	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	N/A	N/A
2	West	0.47	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	N/A	N/A
2	South	0.15	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	N/A	N/A
2	East	1.25	0.00	0.00	2.11	3.16		N/A	N/A
3	North	0.31	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	N/A	N/A
3	West	0.47	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	N/A	N/A
3	South	0.09	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	N/A	N/A
3	East	1.24	0.00	0.00	2.11	3.16		N/A	N/A

Queue Variation results: (16:30-16:45)

Intersection	Leg	Mean (PCE)	Q05 (PCE)	Q50 (PCE)	Q90 (PCE)	Q95 (PCE)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
1	North	1.13	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	West	1.58	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	South	0.22	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	East	20.21	0.00	12.65	45.34	59.05			N/A	N/A
2	North	1.15	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	West	0.68	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	South	0.21	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	East	2.13	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	North	0.46	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	West	0.67	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	South	0.12	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	East	2.11	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A

Queue Variation results: (16:45-17:00)

Intersection	Leg	Mean (PCE)	Q05 (PCE)	Q50 (PCE)	Q90 (PCE)	Q95 (PCE)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
1	North	1.17	0.00	0.00	0.00	2.03			N/A	N/A
1	West	1.61	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	South	0.22	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	East	29.95	0.00	18.98	69.59	90.68			N/A	N/A
2	North	1.17	0.00	0.00	0.00	2.03			N/A	N/A

2	West	0.68	0.00	0.00	0.00	1.08		N/A	N/A
2	South	0.21	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	N/A	N/A
2	East	2.16	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	N/A	N/A
3	North	0.46	0.00	0.00	0.00	1.02		N/A	N/A
3	West	0.67	0.00	0.00	0.00	1.08		N/A	N/A
3	South	0.12	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	N/A	N/A
3	East	2.14	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	N/A	N/A

Queue Variation results: (17:00-17:15)

Intersection	Leg	Mean (PCE)	Q05 (PCE)	Q50 (PCE)	Q90 (PCE)	Q95 (PCE)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
1	North	0.75	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	West	0.99	0.00	0.00	1.08	1.08			N/A	N/A
1	South	0.16	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	East	5.53	0.00	0.00	12.65	21.09			N/A	N/A
2	North	0.65	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	'ercentiles could not be calculated. This hay be because the mean queue is very small or very big.		N/A
2	West	0.48	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	South	0.15	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	East	1.28	0.00	0.00	1.05	2.11			N/A	N/A
3	North	0.31	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	West	0.47	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	South	0.09	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	East	1.27	0.00	0.00	1.05	2.11			N/A	N/A

Queue Variation results: (17:15-17:30)

Intersection	Leg	Mean (PCE)	Q05 (PCE)	Q50 (PCE)	Q90 (PCE)	Q95 (PCE)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
1	North	0.45	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	West	0.68	0.00	0.00	0.00	1.08			N/A	N/A
1	South	0.12	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	East	2.31	0.00	0.00	1.05	6.33			N/A	N/A
2	North	0.44	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	I not be calculated. This the mean queue is very N/A or very big.		N/A
2	West	0.36	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	N/A		N/A
2	South	0.12	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	East	0.88	0.00	0.00	1.05	1.05			N/A	N/A
3	North	0.23	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	West	0.36	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	South	0.07	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A

3 East 0.88 0.00 0.00 1.05 1.05	N/A	N/A

Junctions 8

ARCADY 8 - Roundabout Module

Version: 8.0.6.541 [19821,26/11/2015] © Copyright TRL Limited, 2020

For sales and distribution information, program advice and maintenance, contact TRL: Tel: +44 (0)1344 770758 email: software@trl.co.uk Web: http://www.trlsoftware.co.uk

The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution

Filename: Centennial and Riddell.arc8

Path: C:\Users\AdamMorrison\Desktop\Projects\200195 - Arcady Report generation date: 2020-08-25 7:58:35 PM

Summary of intersection performance

			Α	М			
	Queue (PCE)	95% Queue (PCE)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS
		A1	- Backgı	round 20	31		
Intersection 1 - Leg North	0.60	1.07	6.48	0.36	Α		
Intersection 1 - Leg West	4.24	13.72	19.26	0.80	С	12.06	Р
Intersection 1 - Leg South	1.47	2.04	13.64	0.60	В	13.90	Б
Intersection 1 - Leg East	1.53	1.22	10.70	0.56	В		
Intersection 2 - Leg North	0.59	1.07	6.36	0.36	Α		
Intersection 2 - Leg West	1.21	?	5.35	0.52	Α	6.74	
Intersection 2 - Leg South	1.38	2.04	12.72	0.58	В	0.74	A
Intersection 2 - Leg East	0.67	1.22	4.62	0.36	A		
Intersection 3 - Leg North	0.31	~1	3.34	0.23	Α		
Intersection 3 - Leg West	1.19	?	5.26	0.51	Α		
Intersection 3 - Leg South	0.50	1.02	4.62	0.33	A	4.64	A
Intersection 3 - Leg East	0.66	1.22	4.53	0.35	A]	

Values shown are the maximum values over all time segments. Delay is the maximum value of average delay per arriving vehicle. Intersection LOS and Intersection Delay are demandweighted averages.

"D1 - Background 2031, AM " model duration: 8:00 AM - 9:30 AM "D2 - Background 2031, PM" model duration: 4:00 PM - 5:30 PM

Run using Junctions 8.0.6.541 at 2020-08-25 7:58:33 PM

File summary

Title	(untitled)
Location	
Site Number	
Date	2020-08-25
Version	
Status	(new file)
Identifier	
Client	
Jobnumber	
Analyst	AdamMorrison
Description	

Analysis Options

Vehicle Length	Do Queue	Calculate Residual	Residual Capacity Criteria	V/C Ratio	Average Delay Threshold	Queue Threshold
(m)	Variations	Capacity	Type	Threshold	(s)	(PCE)
5.75	✓		N/A	0.85	36.00	20.00

Units

Distance Units	Speed Units	Traffic Units Input	Traffic Units Results	Flow Units	Average Delay Units	Total Delay Units	Rate Of Delay Units
m	kph	PCE	PCE	perHour	s	-Min	perMin

(Default Analysis Set) - Background 2031, AM

Data Errors and Warnings

No errors or warnings

Analysis Set Details

Name	Roundabout Capacity Model	Description	Include In Report	Use Specific Demand Set(s)	Specific Demand Set(s)	Locked	Network Flow Scaling Factor (%)	Network Capacity Scaling Factor (%)	Reason For Scaling Factors
(Default Analysis Set)	ARCADY		~				100.000	100.000	

Demand Set Details

Name	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Results For Central Hour Only	Single Time Segment Only	Locked	Run Automatically	Use Relationship	Relationship
Background 2031, AM	Background 2031	AM		ONE HOUR	08:00	09:30	90	15				~		

Intersection Network

Intersections

Junction	Intersection	Name	Intersection Type	Leg Order	Grade Separated	Large Roundabout	Do Geometric Delay	Intersection Delay (s)	Intersection LOS
1	1	(untitled)	Roundabout	North,West,South,East				13.96	В
2	2	(untitled)	Roundabout	North,West,South,East				6.74	А
3	3	(untitled)	Roundabout	North,West,South,East				4.64	A

Intersection Network Options

Driving Side	Lighting
Right	Normal/unknown

Legs

Legs

Intersection	Leg	Leg	Name	Description
1	North	North	Alder Street	
1	West	West	Riddell Road	
1	South	South	Alder Street	
1	East	East	Riddell Road	
2	North	North	Alder Street	
2	West	West	Riddell Road	
2	South	South	Alder Street	
2	East	East	Riddell Road	
3	North	North	Alder Street	
3	West	West	Riddell Road	
3	South	South	Alder Street	
3	East	East	Riddell Road	

Capacity Options

Intersection	Leg	Minimum Capacity (PCE/hr)	Maximum Capacity (PCE/hr)	Assume Flat Start Profile	Initial Queue (PCE)
1	North	0.00	99999.00		0.00
1	West	0.00	99999.00		0.00
1	South	0.00	99999.00		0.00
1	East	0.00	99999.00		0.00
2	North	0.00	99999.00		0.00

2	West	0.00	99999.00	0.00
2	South	0.00	99999.00	0.00
2	East	0.00	99999.00	0.00
3	North	0.00	99999.00	0.00
3	West	0.00	99999.00	0.00
3	South	0.00	99999.00	0.00
3	East	0.00	99999.00	0.00

Roundabout Geometry

Intersection	Leg	V - Approach road half- width (m)	E - Entry width (m)	l' - Effective flare length (m)	R - Entry radius (m)	D - Inscribed circle diameter (m)	PHI - Conflict (entry) angle (deg)	Exit Only
1	North	3.50	4.50	30.00	20.00	40.00	25.00	
1	West	3.50	4.50	30.00	20.00	40.00	25.00	
1	South	3.50	4.50	30.00	20.00	40.00	25.00	
1	East	3.50	4.50	30.00	20.00	40.00	25.00	
2	North	3.50	4.50	30.00	20.00	47.50	25.00	
2	West	3.50	8.00	30.00	20.00	47.50	25.00	
2	South	3.50	4.50	30.00	20.00	47.50	25.00	
2	East	3.50	8.00	30.00	20.00	47.50	25.00	
3	North	3.50	8.00	30.00	20.00	55.00	25.00	
3	West	3.50	8.00	30.00	20.00	55.00	25.00	
3	South	3.50	8.00	30.00	20.00	55.00	25.00	
3	East	3.50	8.00	30.00	20.00	55.00	25.00	

Slope / Intercept / Capacity

Leg Intercept Adjustments

Intersection	Leg	Туре	Reason	Direct Intercept Adjustment (PCE/hr)	Percentage Intercept Adjustment (%)
1	North	Percentage	Region of Waterloo Standard		90.00
1	West	Percentage	Region of Waterloo Standard		90.00
1	South	Percentage	Region of Waterloo Standard		90.00
1	East	Percentage	Region of Waterloo Standard		90.00
2	North	Percentage	Region of Waterloo Standard		90.00
2	West	Percentage	Region of Waterloo Standard		90.00
2	South	Percentage	Region of Waterloo Standard		90.00
2	East	Percentage	Region of Waterloo Standard		90.00
3	North	Percentage	Region of Waterloo Standard		90.00
3	West	Percentage	Region of Waterloo Standard		90.00
3	South	Percentage	Region of Waterloo Standard		90.00
3	East	Percentage	Region of Waterloo Standard		90.00

Roundabout Slope and Intercept used in model

Intersection	Leg	Enter slope and intercept directly	Entered slope	Entered intercept (PCE/hr)	Final Slope	Final Intercept (PCE/hr)
1	North		(calculated)	(calculated)	0.579	1221.701
1	West		(calculated)	(calculated)	0.579	1221.701
1	South		(calculated)	(calculated)	0.579	1221.701
1	East		(calculated)	(calculated)	0.579	1221.701
2	North		(calculated)	(calculated)	0.558	1221.701
2	West		(calculated)	(calculated)	0.685	1814.551
2	South		(calculated)	(calculated)	0.558	1221.701
2	East		(calculated)	(calculated)	0.685	1814.551
3	North		(calculated)	(calculated)	0.647	1814.551
3	West		(calculated)	(calculated)	0.647	1814.551
3	South		(calculated)	(calculated)	0.647	1814.551
3	East		(calculated)	(calculated)	0.647	1814.551

The slope and intercept shown above include any corrections and adjustments.

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCE Factor for a Truck (PCE)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
---------------------------	------------------------------------	------------------------------------	-------------------------------------	-----------------------	------------------------------------	-----------------------------------	---------------------------------------	--	--	---

Image: Constraint of the second se			\checkmark	✓	Truck Percentages	2.00				✓	~
---	--	--	--------------	---	----------------------	------	--	--	--	---	---

Entry Flows

General Flows Data

Intersection	Leg	Profile Type	Use Turning Counts	Average Demand Flow (PCE/hr)	Flow Scaling Factor (%)	
1	North	ONE HOUR	✓	306.00	100.000	
1	West	ONE HOUR	✓	746.00	100.000	
1	South	ONE HOUR	~	359.00	100.000	
1	East	ONE HOUR	✓	475.00	100.000	
2	North	ONE HOUR	✓	306.00	100.000	
2	West	ONE HOUR	✓	746.00	100.000	
2	South	ONE HOUR	~	359.00	100.000	
2	East	ONE HOUR	✓	475.00	100.000	
3	North	ONE HOUR	~	306.00	100.000	
3	West	ONE HOUR	✓	746.00	100.000	
3	South	ONE HOUR	1	359.00	100.000	
3	East	ONE HOUR	✓	475.00	100.000	

Turning Proportions

Turning Counts / Proportions (PCE/hr) - Intersection 1 (for whole period)

	То							
		North	West	South	East			
From	North	0.000	71.000	97.000	138.000			
	West	195.000	0.000	8.000	543.000			
	South	186.000	72.000	0.000	101.000			
	East	92.000	321.000	62.000	0.000			

Turning Proportions (PCE) - Intersection 1 (for whole period)

	То								
		North	West	South	East				
From	North	0.00	0.23	0.32	0.45				
	West	0.26	0.00	0.01	0.73				
	South	0.52	0.20	0.00	0.28				
	East	0.19	0.68	0.13	0.00				

Turning Counts / Proportions (PCE/hr) - Intersection 2 (for whole period)

	То							
		North	West	South	East			
From	North	0.000	71.000	97.000	138.000			
	West	195.000	0.000	8.000	543.000			
	South	186.000	72.000	0.000	101.000			
	East	92.000	321.000	62.000	0.000			

Turning Proportions (PCE) - Intersection 2 (for whole period)

	То							
		North	West	South	East			
	North	0.00	0.23	0.32	0.45			
From	West	0.26	0.00	0.01	0.73			
	South	0.52	0.20	0.00	0.28			
	East	0.19	0.68	0.13	0.00			

Turning Counts / Proportions (PCE/hr) - Intersection 3 (for whole period)

	То											
	North	West	South	East								
North	0.000	71.000	97.000	138.000								

	West	195.000	0.000	8.000	543.000
From	South	186.000	72.000	0.000	101.000
	East	92.000	321.000	62.000	0.000

Turning Proportions (PCE) - Intersection 3 (for whole period)

		То										
		North	West	South	East							
	North	0.00	0.23	0.32	0.45							
From	West	0.26	0.00	0.01	0.73							
	South	0.52	0.20	0.00	0.28							
	East	0.19	0.68	0.13	0.00							

Vehicle Mix

Average PCE Per Vehicle - Intersection 1 (for whole period)

			То		
		North	West	South	East
	North	1.000	1.110	1.030	1.080
From	West	1.070	1.000	1.330	1.170
	South	1.010	1.020	1.000	1.040
	East	1.250	1.260	1.020	1.000

Truck Percentages - Intersection 1 (for whole period)

			То		
		North	West	South	East
	North	0.0	11.0	3.0	8.0
From	West	7.0	0.0	33.0	17.0
	South	1.0	2.0	0.0	4.0
	East	25.0	26.0	2.0	0.0

Average PCE Per Vehicle - Intersection 2 (for whole period)

			То				
		North	West	South	East		
	North	1.000	000 1.110 1.030				
From	West	1.070	1.000	1.330	1.170		
	South	1.010	1.020	1.000	1.040		
	East	1.250	1.260	1.020	1.000		

Truck Percentages - Intersection 2 (for whole period)

			То		
		North	West	South	East
	North	0.0	11.0	3.0	8.0
From	West	7.0	0.0	33.0	17.0
	South	1.0	2.0	0.0	4.0
	East	25.0	26.0	2.0	0.0

Average PCE Per Vehicle - Intersection 3 (for whole period)

			То		
		North	West	South	East
	North	1.000	1.110	1.030	1.080
From	West	1.070	1.000	1.330	1.170
	South	1.010	1.020	1.000	1.040
	East	1.250	1.260	1.020	1.000

Truck Percentages - Intersection 3 (for whole period)

			То		
		North	West	South	East
	North	0.0	11.0	3.0	8.0
From	West	7.0	0.0	33.0	17.0
	South	1.0	2.0	0.0	4.0
	East	25.0	26.0	2.0	0.0

Results

Results Summary for whole modelled period

Intersection	Leg	Max V/C Ratio	Max Delay (s)	Max Queue (PCE)	Max 95th percentile Queue (PCE)	Max LOS	Average Demand (PCE/hr)	Total Intersection Arrivals (PCE)	Total Queueing Delay (PCE- min)	Average Queueing Delay (s)	Rate Of Queueing Delay (PCE- min/min)	Inclusive Total Queueing Delay (PCE- min)	Inclusive Average Queueing Delay (s)
1	North	0.36	6.48	0.60	1.07	A 280.79		421.19	39.51	5.63	0.44	39.51	5.63
1	West	0.80	19.26	4.24	13.72	C 684.54		1026.81	211.70	12.37	2.35	211.74	12.37
1	South	0.60	13.64	1.47	2.04	В	329.42	494.14	78.82	9.57	0.88	78.83	9.57
1	East	0.56	10.70	1.53	1.22	В	435.87	653.80	92.10	8.45	1.02	92.11	8.45
2	North	0.36	6.36	0.59	1.07	A	280.79	421.19	38.99	5.55	0.43	39.00	5.56
2	West	0.52	5.35	1.21	?	Α	684.54	1026.81	77.17	4.51	0.86	77.18	4.51
2	South	0.58	12.72	1.38	2.04	В	329.42	494.14	75.28	9.14	0.84	75.29	9.14
2	East	0.36	4.62	0.67	1.22	A	435.87	653.80	44.59	4.09	0.50	44.60	4.09
3	North	0.23	3.34	0.31	~1	A	280.79	421.19	21.62	3.08	0.24	21.62	3.08
3	West	0.51	5.26	1.19	?	Α	684.54	1026.81	76.24	4.46	0.85	76.25	4.46
3	South	0.33	4.62	0.50	1.02	Α	329.42	494.14	32.38	3.93	0.36	32.38	3.93
3	East	0.35	4.53	0.66	1.22	A	435.87	653.80	43.91	4.03	0.49	43.92	4.03

Main Results for each time segment

Main results: (08:00-08:15)

Intersection	Leg	Total Demand (PCE/hr)	Intersection Arrivals (PCE)	Entry Flow (PCE/hr)	Exit Flow (PCE/hr)	Circulating Flow (PCE/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCE/hr)	Saturation Capacity (PCE/hr)	V/C Ratio	Start Queue (PCE)	End Queue (PCE)	Delay (s)	LOS
1	North	230.37	57.59	229.14	353.37	340.08	0.00	1024.87	752.87	0.225	0.00	0.31	4.835	Α
1	West	561.63	140.41	556.88	346.91	222.31	0.00	1093.03	821.60	0.514	0.00	1.19	7.613	Α
1	South	270.27	67.57	268.37	124.95	654.24	0.00	843.05	554.78	0.321	0.00	0.48	6.371	Α
1	East	357.60	89.40	355.02	584.18	338.43	0.00	1025.83	866.65	0.349	0.00	0.65	6.526	Α
2	North	230.37	57.59	229.15	354.25	341.03	0.00	1031.42	551.99	0.223	0.00	0.31	4.796	Α
2	West	561.63	140.41	559.31	347.71	222.47	0.00	1662.21	1398.14	0.338	0.00	0.58	3.724	Α
2	South	270.27	67.57	268.41	125.13	656.65	0.00	855.31	311.05	0.316	0.00	0.47	6.238	Α
2	East	357.60	89.40	356.19	585.97	339.09	0.00	1582.35	1411.22	0.226	0.00	0.35	3.581	Α
3	North	230.37	57.59	229.65	354.72	341.22	0.00	1593.93	1057.16	0.145	0.00	0.18	2.822	Α
3	West	561.63	140.41	559.33	348.01	222.86	0.00	1670.45	1182.74	0.336	0.00	0.58	3.697	Α
3	South	270.27	67.57	269.29	125.29	656.90	0.00	1389.82	749.75	0.194	0.00	0.25	3.274	Α
3	East	357.60	89.40	356.20	586.45	339.74	0.00	1594.88	1266.26	0.224	0.00	0.35	3.545	Α

Main results: (08:15-08:30)

Intersection	Leg	Total Demand (PCE/hr)	Intersection Arrivals (PCE)	Entry Flow (PCE/hr)	Exit Flow (PCE/hr)	Circulating Flow (PCE/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCE/hr)	Saturation Capacity (PCE/hr)	V/C Ratio	Start Queue (PCE)	End Queue (PCE)	Delay (s)	LOS
1	North	275.09	68.77	274.68	423.76	407.96	0.00	985.59	752.87	0.279	0.31	0.41	5.415	A
1	West	670.64	167.66	667.88	416.09	266.54	0.00	1067.44	821.60	0.628	1.19	1.88	10.230	В
1	South	322.73	80.68	321.72	149.83	784.59	0.00	767.61	554.78	0.420	0.48	0.73	8.218	A
1	East	427.02	106.75	425.93	700.52	405.79	0.00	986.85	866.65	0.433	0.65	0.92	7.818	A
2	North	275.09	68.77	274.68	424.41	408.48	0.00	993.78	551.99	0.277	0.31	0.41	5.356	A
2	West	670.64	167.66	669.79	416.54	266.63	0.00	1631.97	1398.14	0.411	0.58	0.79	4.275	A
2	South	322.73	80.68	321.78	149.93	786.49	0.00	782.86	311.05	0.412	0.47	0.71	7.949	A
2	East	427.02	106.75	426.57	701.94	406.33	0.00	1536.31	1411.22	0.278	0.35	0.47	3.957	Α
3	North	275.09	68.77	274.89	424.73	408.61	0.00	1550.35	1057.16	0.177	0.18	0.23	3.020	A
3	West	670.64	167.66	669.81	416.71	266.79	0.00	1642.05	1182.74	0.408	0.58	0.78	4.230	A
3	South	322.73	80.68	322.38	150.00	786.59	0.00	1305.95	749.75	0.247	0.25	0.33	3.734	A
3	East	427.02	106.75	426.58	702.21	406.77	0.00	1551.54	1266.26	0.275	0.35	0.46	3.903	A

Main results: (08:30-08:45)

Intersection	Leg	Total Demand (PCE/hr)	Intersection Arrivals (PCE)	Entry Flow (PCE/hr)	Exit Flow (PCE/hr)	Circulating Flow (PCE/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCE/hr)	Saturation Capacity (PCE/hr)	V/C Ratio	Start Queue (PCE)	End Queue (PCE)	Delay (s)	LOS
					1									1 1
North	336.91	84.23	336.16	516.60	498.50	0.00	933.19	752.87	0.361	0.41	0.60	6.445	A	
-------	---	--	--	---	--	---	--	--	--	---	--	--	---	
West	821.36	205.34	812.65	508.54	326.12	0.00	1032.96	821.60	0.795	1.88	4.06	17.998	С	
South	395.27	98.82	392.48	183.23	955.54	0.00	668.68	554.78	0.591	0.73	1.43	13.165	В	
East	522.98	130.75	520.62	853.53	494.48	0.00	935.51	866.65	0.559	0.92	1.51	10.530	В	
North	336.91	84.23	336.18	518.86	499.81	0.00	942.82	551.99	0.357	0.41	0.59	6.343	Α	
West	821.36	205.34	819.70	509.65	326.34	0.00	1591.09	1398.14	0.516	0.79	1.21	5.324	Α	
South	395.27	98.82	392.69	183.52	962.53	0.00	684.64	311.05	0.577	0.71	1.35	12.471	В	
East	522.98	130.75	522.19	858.74	496.47	0.00	1474.59	1411.22	0.355	0.47	0.67	4.610	Α	
North	336.91	84.23	336.59	519.86	500.21	0.00	1491.13	1057.16	0.226	0.23	0.31	3.337	Α	
West	821.36	205.34	819.75	510.14	326.65	0.00	1603.34	1182.74	0.512	0.78	1.19	5.243	Α	
South	395.27	98.82	394.59	183.65	962.75	0.00	1192.06	749.75	0.332	0.33	0.50	4.602	Α	
East	522.98	130.75	522.21	859.49	497.85	0.00	1492.65	1266.26	0.350	0.46	0.65	4.524	А	
	North West South East North East North West South East	North 336.91 West 821.36 South 395.27 East 522.98 North 336.91 West 821.36 South 395.27 East 522.98 North 395.27 East 522.98 North 336.91 West 821.36 South 336.91 West 821.36 South 395.27 East 522.98 South 395.27	North 336.91 84.23 West 821.36 205.34 South 395.27 98.82 East 522.98 130.75 North 336.91 84.23 West 821.36 205.34 South 395.27 98.82 East 522.98 130.75 North 395.27 98.82 East 522.98 130.75 North 336.91 84.23 West 821.36 205.34 South 336.91 84.23 Most 482.136 205.34 North 336.91 84.23 Most 821.36 205.34 North 336.91 84.23 West 821.36 205.34 South 395.27 98.82 South 395.27 98.82 South 395.27 98.82 East 522.98 130.75	North 336.91 84.23 336.16 West 821.36 205.34 812.65 South 395.27 98.82 392.48 East 522.98 130.75 520.62 North 336.91 84.23 336.18 West 821.36 205.34 819.70 South 395.27 98.82 392.69 Morth 336.91 84.23 336.18 West 821.36 205.34 819.70 South 395.27 98.82 392.69 East 522.98 130.75 522.19 North 336.91 84.23 336.59 West 821.36 205.34 819.75 South 336.91 84.23 336.59 West 821.36 205.34 819.75 South 395.27 98.82 394.59 South 395.27 98.82 394.59 East 522.98 130.75 522.21	North 336.91 84.23 336.16 516.60 West 821.36 205.34 812.65 508.54 South 395.27 98.82 392.48 183.23 East 522.98 130.75 520.62 853.53 North 336.91 84.23 336.18 518.86 West 821.36 205.34 819.70 509.65 South 395.27 98.82 392.69 183.52 Mest 821.36 205.34 819.70 509.65 South 395.27 98.82 392.69 183.52 East 522.98 130.75 522.19 858.74 North 336.91 84.23 336.59 519.86 West 821.36 205.34 336.59 519.86 West 821.36 205.34 819.75 510.14 South 395.27 98.82 394.59 183.65 West 821.36 205.34 819.75 510.14	North 336.91 84.23 336.16 516.60 498.50 West 821.36 205.34 812.65 508.54 326.12 South 395.27 98.82 392.48 183.23 955.54 East 522.98 130.75 520.62 853.53 494.48 North 336.91 84.23 336.18 518.86 499.81 West 821.36 205.34 819.70 509.65 326.34 South 395.27 98.82 392.69 183.52 962.53 South 395.27 98.82 392.69 183.52 962.53 South 395.27 98.82 392.69 183.52 962.53 East 522.98 130.75 522.19 858.74 496.47 North 336.91 84.23 336.59 519.86 500.21 North 336.91 84.23 336.59 519.48 500.21 West 821.36 205.34 819.75 <	North 336.91 84.23 336.16 516.60 498.50 0.00 West 821.36 205.34 812.65 508.54 326.12 0.00 South 395.27 98.82 392.48 183.23 955.54 0.00 East 522.98 130.75 520.62 853.53 494.48 0.00 North 336.91 84.23 336.18 518.86 499.81 0.00 South 395.27 98.82 392.48 183.23 965.53 0.00 Morth 336.91 84.23 336.18 518.86 499.81 0.00 West 821.36 205.34 819.70 509.65 326.34 0.00 South 395.27 98.82 392.69 183.52 962.53 0.00 South 336.91 84.23 336.59 519.86 500.21 0.00 Morth 336.91 84.23 336.59 519.86 500.21 0.00 Morth	North 336.91 84.23 336.16 516.00 498.50 0.00 933.19 West 821.36 205.34 812.65 508.54 326.12 0.00 1032.96 South 395.27 98.82 392.48 183.23 955.54 0.00 668.68 East 522.98 130.75 520.62 853.53 494.48 0.00 935.51 North 336.91 84.23 336.18 518.66 499.81 0.00 942.82 West 821.36 205.34 819.70 509.65 326.34 0.00 1591.09 South 395.27 98.82 392.69 183.52 962.53 0.00 684.64 East 522.98 130.75 522.19 858.74 496.47 0.00 1474.59 North 336.91 84.23 336.59 519.86 500.21 0.00 1491.13 West 821.36 205.34 819.75 510.14 326.65 0.00	North 336.91 84.23 336.16 516.60 498.50 0.00 933.19 752.87 West 821.36 205.34 812.65 508.54 326.12 0.00 1032.96 821.60 South 395.27 98.82 392.48 183.23 955.54 0.00 668.68 554.78 East 522.98 130.75 520.62 853.53 494.48 0.00 935.51 866.65 North 336.91 84.23 336.18 518.86 499.81 0.00 942.82 551.99 West 821.36 205.34 819.70 509.65 326.34 0.00 1591.09 1398.14 South 395.27 98.82 392.69 183.52 962.53 0.00 684.64 311.05 East 522.98 130.75 522.19 858.74 496.47 0.00 1474.59 1411.22 North 336.91 84.23 336.59 519.86 500.21 0.00 1491.1	North 336.91 84.23 336.16 516.60 498.50 0.00 933.19 752.87 0.361 West 821.36 205.34 812.65 508.54 326.12 0.00 1032.96 821.60 0.752.87 South 395.27 98.82 392.48 183.23 955.54 0.00 668.68 554.78 0.591 East 522.98 130.75 520.62 853.53 494.48 0.00 935.51 866.65 0.559 North 336.91 84.23 336.18 518.86 499.81 0.00 942.82 551.99 0.357 West 821.36 205.34 819.70 509.65 326.34 0.00 942.82 551.99 0.357 West 821.36 205.34 819.70 509.65 326.34 0.00 1591.09 1398.14 0.516 South 395.27 98.82 392.69 183.52 962.53 0.00 1474.59 1411.22 0.355	North336.9184.23336.16516.60498.500.00933.19752.870.3610.41West821.36205.34812.65508.54326.120.001032.96821.600.7951.88South395.2798.82392.48183.23955.540.00668.68554.780.5910.731East522.98130.75520.62853.53494.480.00935.51866.650.5990.921North336.9184.23336.18518.86499.810.00942.82551.990.3570.41West821.36205.34819.70509.65326.340.001591.091398.140.5160.791South395.2798.82392.69183.52962.530.00684.64311.050.5770.711East522.98130.75522.19858.74496.470.001474.591411.220.3550.471North336.9184.23336.59519.86500.210.001491.131057.160.2260.233West821.36205.34819.75510.14326.650.001603.341182.740.5120.332South395.2798.82394.59183.65962.750.001192.06749.750.3320.332Bast522.98130.75522.21859.49497.850.001492.651266.260.3500.342 <th>North336.9184.23336.16516.60498.500.00933.19752.870.3610.410.60West821.36205.34812.65508.54326.120.001032.96821.600.7951.884.06South395.2798.82392.48183.23955.540.00668.68554.780.5910.731.43East522.98130.75520.62853.53494.480.00935.51866.650.5590.921.51North336.9184.23336.18518.66499.810.00942.82551.990.3570.410.59West821.36205.34819.70509.65326.340.001591.091398.140.5160.791.21South395.2798.82392.69183.52962.530.00684.64311.050.5770.711.35East522.98130.75522.19858.74496.470.001474.591411.220.3550.470.671North336.9184.23336.59519.86500.210.0011491.131057.160.2260.230.311Suth336.9184.23394.59183.65962.750.0011491.311057.160.5120.781.19Suth336.9184.23336.59519.46500.210.0011491.311057.160.320.330.330.33West821.36</th> <th>North336.9184.23336.16516.60498.500.00933.19752.870.3610.410.606.445West821.36205.34812.65508.54326.120.001032.96821.600.7951.884.0617.998South395.2798.82392.48183.23955.540.00668.68554.780.5910.731.4313.165East522.98130.75520.62853.53494.480.00935.51866.650.5590.921.5110.530North336.9184.23336.18518.66499.810.00942.82551.990.3570.410.596.343West821.36205.34819.70509.65326.340.001591.091398.140.5160.791.215.324South395.2798.82392.99183.52962.530.00684.64311.050.570.711.3512.47Fast522.98130.75522.19858.74496.470.001474.591411.220.3550.470.6174.617North336.9184.23336.59519.86500.210.001491.131057.160.2260.230.313.337West821.36205.34819.75510.14326.650.001603.341182.740.5120.781.19524.33South336.9184.23336.59510.14326.</th>	North336.9184.23336.16516.60498.500.00933.19752.870.3610.410.60West821.36205.34812.65508.54326.120.001032.96821.600.7951.884.06South395.2798.82392.48183.23955.540.00668.68554.780.5910.731.43East522.98130.75520.62853.53494.480.00935.51866.650.5590.921.51North336.9184.23336.18518.66499.810.00942.82551.990.3570.410.59West821.36205.34819.70509.65326.340.001591.091398.140.5160.791.21South395.2798.82392.69183.52962.530.00684.64311.050.5770.711.35East522.98130.75522.19858.74496.470.001474.591411.220.3550.470.671North336.9184.23336.59519.86500.210.0011491.131057.160.2260.230.311Suth336.9184.23394.59183.65962.750.0011491.311057.160.5120.781.19Suth336.9184.23336.59519.46500.210.0011491.311057.160.320.330.330.33West821.36	North336.9184.23336.16516.60498.500.00933.19752.870.3610.410.606.445West821.36205.34812.65508.54326.120.001032.96821.600.7951.884.0617.998South395.2798.82392.48183.23955.540.00668.68554.780.5910.731.4313.165East522.98130.75520.62853.53494.480.00935.51866.650.5590.921.5110.530North336.9184.23336.18518.66499.810.00942.82551.990.3570.410.596.343West821.36205.34819.70509.65326.340.001591.091398.140.5160.791.215.324South395.2798.82392.99183.52962.530.00684.64311.050.570.711.3512.47Fast522.98130.75522.19858.74496.470.001474.591411.220.3550.470.6174.617North336.9184.23336.59519.86500.210.001491.131057.160.2260.230.313.337West821.36205.34819.75510.14326.650.001603.341182.740.5120.781.19524.33South336.9184.23336.59510.14326.	

Main results: (08:45-09:00)

Intersection	Leg	Total Demand (PCE/hr)	Intersection Arrivals (PCE)	Entry Flow (PCE/hr)	Exit Flow (PCE/hr)	Circulating Flow (PCE/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCE/hr)	Saturation Capacity (PCE/hr)	V/C Ratio	Start Queue (PCE)	End Queue (PCE)	Delay (s)	LOS
1	North	336.91	84.23	336.90	520.49	500.85	0.00	931.83	752.87	0.362	0.60	0.60	6.475	Α
1	West	821.36	205.34	820.65	510.77	326.98	0.00	1032.46	821.60	0.796	4.06	4.24	19.264	С
1	South	395.27	98.82	395.09	183.84	963.78	0.00	663.90	554.78	0.595	1.43	1.47	13.645	В
1	East	522.98	130.75	522.88	860.42	498.45	0.00	933.22	866.65	0.560	1.51	1.53	10.702	В
2	North	336.91	84.23	336.90	520.72	500.93	0.00	942.19	551.99	0.358	0.59	0.59	6.364	Α
2	West	821.36	205.34	821.33	510.84	326.99	0.00	1590.64	1398.14	0.516	1.21	1.21	5.350	Α
2	South	395.27	98.82	395.17	183.86	964.46	0.00	683.56	311.05	0.578	1.35	1.38	12.724	В
2	East	522.98	130.75	522.97	860.94	498.68	0.00	1473.07	1411.22	0.355	0.67	0.67	4.624	Α
3	North	336.91	84.23	336.91	520.77	500.95	0.00	1490.64	1057.16	0.226	0.31	0.31	3.338	Α
3	West	821.36	205.34	821.33	510.86	327.00	0.00	1603.12	1182.74	0.512	1.19	1.19	5.265	Α
3	South	395.27	98.82	395.26	183.87	964.46	0.00	1190.95	749.75	0.332	0.50	0.50	4.615	Α
3	East	522.98	130.75	522.97	860.97	498.75	0.00	1492.07	1266.26	0.351	0.65	0.66	4.534	A

Main results: (09:00-09:15)

Intersection	Leg	Total Demand (PCE/hr)	Intersection Arrivals (PCE)	Entry Flow (PCE/hr)	Exit Flow (PCE/hr)	Circulating Flow (PCE/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCE/hr)	Saturation Capacity (PCE/hr)	V/C Ratio	Start Queue (PCE)	End Queue (PCE)	Delay (s)	LOS
1	North	275.09	68.77	275.82	429.47	411.48	0.00	983.55	752.87	0.280	0.60	0.42	5.451	Α
1	West	670.64	167.66	679.60	419.44	267.86	0.00	1066.67	821.60	0.629	4.24	1.99	10.868	В
1	South	322.73	80.68	325.55	150.76	796.70	0.00	760.60	554.78	0.424	1.47	0.76	8.497	Α
1	East	427.02	106.75	429.35	710.65	411.61	0.00	983.48	866.65	0.434	1.53	0.95	7.962	Α
2	North	275.09	68.77	275.80	427.14	410.18	0.00	992.83	551.99	0.277	0.59	0.41	5.380	Α
2	West	670.64	167.66	672.27	418.34	267.65	0.00	1631.28	1398.14	0.411	1.21	0.80	4.299	Α
2	South	322.73	80.68	325.32	150.48	789.45	0.00	781.21	311.05	0.413	1.38	0.73	8.102	Α
2	East	427.02	106.75	427.80	705.24	409.52	0.00	1534.13	1411.22	0.278	0.67	0.47	3.974	Α
3	North	275.09	68.77	275.41	426.13	409.78	0.00	1549.59	1057.16	0.178	0.31	0.23	3.026	Α
3	West	670.64	167.66	672.23	417.85	267.34	0.00	1641.69	1182.74	0.409	1.19	0.80	4.253	Α
3	South	322.73	80.68	323.40	150.35	789.23	0.00	1304.25	749.75	0.247	0.50	0.34	3.749	Α
3	East	427.02	106.75	427.77	704.49	408.14	0.00	1550.66	1266.26	0.275	0.66	0.47	3.915	Α

Main results: (09:15-09:30)

Intersection	Leg	Total Demand (PCE/hr)	Intersection Arrivals (PCE)	Entry Flow (PCE/hr)	Exit Flow (PCE/hr)	Circulating Flow (PCE/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCE/hr)	Saturation Capacity (PCE/hr)	V/C Ratio	Start Queue (PCE)	End Queue (PCE)	Delay (s)	LOS
1	North	230.37	57.59	230.80	357.69	343.70	0.00	1022.78	752.87	0.225	0.42	0.31	4.866	A
1	West	561.63	140.41	564.68	350.42	224.07	0.00	1092.02	821.60	0.514	1.99	1.23	7.851	A
1	South	270.27	67.57	271.37	126.04	662.71	0.00	838.15	554.78	0.322	0.76	0.49	6.494	A
1	East	357.60	89.40	358.76	591.45	342.63	0.00	1023.40	866.65	0.349	0.95	0.66	6.624	A
2	North	230.37	57.59	230.79	356.94	343.12	0.00	1030.25	551.99	0.224	0.41	0.31	4.821	A
2	West	561.63	140.41	562.50	349.93	223.97	0.00	1661.18	1398.14	0.338	0.80	0.59	3.751	A
2	South	270.27	67.57	271.28	125.93	660.54	0.00	853.14	311.05	0.317	0.73	0.48	6.325	A
2	East	357.60	89.40	358.06	589.83	341.99	0.00	1580.37	1411.22	0.226	0.47	0.36	3.595	A
3	North	230.37	57.59	230.57	356.59	342.98	0.00	1592.79	1057.16	0.145	0.23	0.18	2.830	A
3	West	561.63	140.41	562.48	349.74	223.81	0.00	1669.84	1182.74	0.336	0.80	0.58	3.719	A
3	South	270.27	67.57	270.63	125.86	660.43	0.00	1387.53	749.75	0.195	0.34	0.25	3.291	A
3	East	357.60	89.40	358.05	589.54	341.52	0.00	1593.73	1266.26	0.224	0.47	0.35	3.559	A

Queueing Delay Results for each time segment

Queueing Delay results: (08:00-08:15)

Intersection	Leg	Queueing Total Delay (PCE-min)	Queueing Rate Of Delay (PCE- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
1	North	4.50	0.30	4.835	А	А
1	West	16.91	1.13	7.613	А	А
1	South	6.89	0.46	6.371	А	A
1	East	9.32	0.62	6.526	А	A
2	North	4.46	0.30	4.796	А	А
2	West	8.48	0.57	3.724	А	А
2	South	6.75	0.45	6.238	А	А
2	East	5.20	0.35	3.581	A	A
3	North	2.66	0.18	2.822	A	A
3	West	8.42	0.56	3.697	A	A
3	South	3.61	0.24	3.274	А	А
3	East	5.15	0.34	3.545	А	А

Queueing Delay results: (08:15-08:30)

Intersection	Leg	Queueing Total Delay (PCE-min)	Queueing Rate Of Delay (PCE- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
1	North	6.04	0.40	5.415	A	A
1	West	26.69	1.78	10.230	В	В
1	South	10.55	0.70	8.218	A	A
1	East	13.32	0.89	7.818	A	A
2	North	5.97	0.40	5.356	A	A
2	West	11.62	0.77	4.275	A	A
2	South	10.22	0.68	7.949	A	A
2	East	6.89	0.46	3.957	A	A
3	North	3.41	0.23	3.020	A	A
3	West	11.51	0.77	4.230	A	A
3	South	4.92	0.33	3.734	A	A
3	East	6.80	0.45	3.903	A	A

Queueing Delay results: (08:30-08:45)

Intersection	Leg	Queueing Total Delay (PCE-min)	Queueing Rate Of Delay (PCE- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
1	North	8.73	0.58	6.445	A	A
1	West	54.14	3.61	17.998	С	В
1	South	20.00	1.33	13.165	В	В
1	East	21.50	1.43	10.530	В	В
2	North	8.59	0.57	6.343	A	А
2	West	17.55	1.17	5.324	A	A
2	South	19.02	1.27	12.471	В	В
2	East	9.77	0.65	4.610	A	А
3	North	4.60	0.31	3.337	A	А
3	West	17.29	1.15	5.243	A	А
3	South	7.37	0.49	4.602	A	А
3	East	9.59	0.64	4.524	A	A

Queueing Delay results: (08:45-09:00)

Intersection	Leg	Queueing Total Delay (PCE-min)	Queueing Rate Of Delay (PCE- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
1	North	9.01	0.60	6.475	A	A
1	West	62.46	4.16	19.264	С	В
1	South	21.80	1.45	13.645	В	В
1	East	22.87	1.52	10.702	В	В
2	North	8.86	0.59	6.364	A	A
2	West	18.16	1.21	5.350	A	A
2	South	20.48	1.37	12.724	В	В
2	East	10.02	0.67	4.624	A	A
3	North	4.67	0.31	3.338	A	A
3	West	17.87	1.19	5.265	A	A
3	South	7.56	0.50	4.615	A	A
3	East	9.83	0.66	4.534	A	A

Queueing Delay results: (09:00-09:15)

Intersection	Leg	Queueing Total Delay (PCE-min)	Queueing Rate Of Delay (PCE- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service

I.		I	L	I.	L	I.
1	North	6.44	0.43	5.451	A	A
1	West	32.21	2.15	10.868	В	В
1	South	11.99	0.80	8.497	A	A
1	East	14.85	0.99	7.962	A	A
2	North	6.35	0.42	5.380	A	A
2	West	12.37	0.82	4.299	A	A
2	South	11.42	0.76	8.102	A	A
2	East	7.24	0.48	3.974	A	A
3	North	3.53	0.24	3.026	A	A
3	West	12.24	0.82	4.253	A	A
3	South	5.16	0.34	3.749	A	A
3	East	7.13	0.48	3.915	A	A

Queueing Delay results: (09:15-09:30)

Intersection	Leg	Queueing Total Delay (PCE-min)	Queueing Rate Of Delay (PCE- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
1	North	4.79	0.32	4.866	А	А
1	West	19.30	1.29	7.851	A	А
1	South	7.59	0.51	6.494	А	А
1	East	10.24	0.68	6.624	A	A
2	North	4.75	0.32	4.821	A	A
2	West	8.99	0.60	3.751	А	A
2	South	7.38	0.49	6.325	А	A
2	East	5.47	0.36	3.595	A	A
3	North	2.76	0.18	2.830	А	A
3	West	8.91	0.59	3.719	А	A
3	South	3.78	0.25	3.291	A	A
3	East	5.41	0.36	3.559	A	A

Queue Variation Results for each time segment

Queue Variation results: (08:00-08:15)

Intersection	Leg	Mean (PCE)	Q05 (PCE)	Q50 (PCE)	Q90 (PCE)	Q95 (PCE)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
1	North	0.31	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	West	1.19	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	South	0.48	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	East	0.65	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	North	0.31	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	West	0.58	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	South	0.47	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	East	0.35	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	North	0.18	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	West	0.58	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	South	0.25	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	East	0.35	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A

Queue Variation results: (08:15-08:30)

Probability Of

Probability Of

Intersection	Leg	Mean (PCE)	Q05 (PCE)	Q50 (PCE)	Q90 (PCE)	Q95 (PCE)	Percentile Message	Marker Message	Reaching Or Exceeding Marker	Exactly Reaching Marker
1	North	0.41	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	West	1.88	0.00	0.00	3.43	5.72			N/A	N/A
1	South	0.73	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	East	0.92	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	North	0.41	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	West	0.79	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	South	0.71	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	East	0.47	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	North	0.23	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	West	0.78	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	South	0.33	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	East	0.46	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A

Queue Variation results: (08:30-08:45)

Intersection	Leg	Mean (PCE)	Q05 (PCE)	Q50 (PCE)	Q90 (PCE)	Q95 (PCE)	Percentile Message Marker Reaching		Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
1	North	0.60	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	West	4.06	0.00	0.00	4.57	13.72			N/A	N/A
1	South	1.43	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	East	1.51	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	North	0.59	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	West	1.21	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	South	1.35	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	East	0.67	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	North	0.31	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	West	1.19	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	South	0.50	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	East	0.65	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A

Queue Variation results: (08:45-09:00)

Intersection	Leg	Mean (PCE)	Q05 (PCE)	Q50 (PCE)	Q90 (PCE)	Q95 (PCE)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
1	North	0.60	0.00	0.00	0.00	1.07			N/A	N/A
1	West	4.24	0.00	0.00	1.14	10.29			N/A	N/A

1	South	1.47	0.00	0.00	0.00	2.04		N/A	N/A
1	East	1.53	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	N/A	N/A
2	North	0.59	0.00	0.00	0.00	1.07		N/A	N/A
2	West	1.21	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	N/A	N/A
2	South	1.38	0.00	0.00	0.00	2.04		N/A	N/A
2	East	0.67	0.00	0.00	0.00	1.22		N/A	N/A
3	North	0.31	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	N/A	N/A
3	West	1.19	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	N/A	N/A
3	South	0.50	0.00	0.00	0.00	1.02		N/A	N/A
3	East	0.66	0.00	0.00	0.00	1.22		N/A	N/A

Queue Variation results: (09:00-09:15)

Intersection	Leg	Mean (PCE)	Q05 (PCE)	Q50 (PCE)	Q90 (PCE)	Q95 (PCE)	Percentile Message Marker Reaching Or Exceeding Marker Message Marker		Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
1	North	0.42	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	West	1.99	0.00	0.00	3.43	5.72			N/A	N/A
1	South	0.76	0.00	0.00	0.00	1.02			N/A	N/A
1	East	0.95	0.00	0.00	0.00	1.22			N/A	N/A
2	North	0.41	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	West	0.80	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	South	0.73	0.00	0.00	0.00	1.02			N/A	N/A
2	East	0.47	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	North	0.23	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	West	0.80	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	South	0.34	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	East	0.47	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A

Queue Variation results: (09:15-09:30)

Intersection	Leg	Mean (PCE)	Q05 (PCE)	Q50 (PCE)	Q90 (PCE)	Q95 (PCE)	Percentile Message Marker Message		Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
1	North	0.31	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	West	1.23	0.00	0.00	1.14	3.43			N/A	N/A
1	South	0.49	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	East	0.66	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	North	0.31	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	West	0.59	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	South	0.48	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	East	0.36	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	North	0.18	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very		N/A	N/A

							small or very big.		
3	West	0.58	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	N/A	N/A
3	South	0.25	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	N/A	N/A
3	East	0.35	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	N/A	N/A

Junctions 8

ARCADY 8 - Roundabout Module

Version: 8.0.6.541 [19821,26/11/2015] © Copyright TRL Limited, 2020

For sales and distribution information, program advice and maintenance, contact TRL: Tel: +44 (0)1344 770758 email: software@trl.co.uk Web: http://www.trlsoftware.co.uk

The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution

Filename: Centennial and Riddell.arc8

Path: C:\Users\AdamMorrison\Desktop\Projects\200195 - Arcady Report generation date: 2020-08-25 7:57:39 PM

Summary of intersection performance

		PM									
	Queue (PCE)	95% Queue (PCE)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS				
		A1 - Background 2031									
Intersection 1 - Leg North	3.67	11.66	25.70	0.79	D						
Intersection 1 - Leg West	1.69	2.30	12.16	0.60	В	105.33	F				
Intersection 1 - Leg South	0.52	1.02	6.77	0.34	A	105.25	r -				
Intersection 1 - Leg East	71.44	132.83	208.57	1.12	F						
Intersection 2 - Leg North	4.81	16.96	34.07	0.83	D						
Intersection 2 - Leg West	0.69	1.15	4.87	0.37	Α	12 70	р				
Intersection 2 - Leg South	0.51	1.02	6.60	0.33	A	13.78	D				
Intersection 2 - Leg East	3.09	4.83	9.92	0.72	A						
Intersection 3 - Leg North	0.93	1.06	6.28	0.47	Α						
Intersection 3 - Leg West	0.67	1.15	4.74	0.37	Α	7 10					
Intersection 3 - Leg South	0.26	~1	3.37	0.20	A	/.18	A				
Intersection 3 - Leg East	3.00	4.83	9.63	0.72	A						

Values shown are the maximum values over all time segments. Delay is the maximum value of average delay per arriving vehicle. Intersection LOS and Intersection Delay are demandweighted averages.

"D1 - Background 2031, AM" model duration: 8:00 AM - 9:30 AM "D2 - Background 2031, PM " model duration: 4:00 PM - 5:30 PM

Run using Junctions 8.0.6.541 at 2020-08-25 7:57:37 PM

File summary

Title	(untitled)
Location	
Site Number	
Date	2020-08-25
Version	
Status	(new file)
Identifier	
Client	
Jobnumber	
Analyst	AdamMorrison
Description	

Analysis Options

Vehicle Length	Do Queue	Calculate Residual	Residual Capacity Criteria	V/C Ratio	Average Delay Threshold	Queue Threshold
(m)	Variations	Capacity	Type	Threshold	(s)	(PCE)
5.75	✓		N/A	0.85	36.00	20.00

Units

Distance Units	Speed Units	Traffic Units Input	Traffic Units Results	Flow Units	Average Delay Units	Total Delay Units	Rate Of Delay Units
m	kph	PCE	PCE	perHour	s	-Min	perMin

(Default Analysis Set) - Background 2031, PM

Data Errors and Warnings

No errors or warnings

Analysis Set Details

Name	Roundabout Capacity Model	Description	Include In Report	Use Specific Demand Set(s)	Specific Demand Set(s)	Locked	Network Flow Scaling Factor (%)	Network Capacity Scaling Factor (%)	Reason For Scaling Factors
(Default Analysis Set)	ARCADY		~				100.000	100.000	

Demand Set Details

Name	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Results For Central Hour Only	Single Time Segment Only	Locked	Run Automatically	Use Relationship	Relationship
Background 2031, PM	Background 2031	PM		ONE HOUR	16:00	17:30	90	15				~		

Intersection Network

Intersections

Junction	Intersection	Name	Intersection Type	Leg Order	Grade Separated	Large Roundabout	Do Geometric Delay	Intersection Delay (s)	Intersection LOS
1	1	(untitled)	Roundabout	North,West,South,East				105.23	F
2	2	(untitled)	Roundabout	North,West,South,East				13.78	В
3	3	(untitled)	Roundabout	North,West,South,East				7.18	A

Intersection Network Options

Driving Side	Lighting
Right	Normal/unknown

Legs

Legs

Intersection	Leg	Leg	Name	Description
1	North	North	Alder Street	
1	West	West	Riddell Road	
1	South	South	Alder Street	
1	East	East	Riddell Road	
2	North	North	Alder Street	
2	West	West	Riddell Road	
2	South	South	Alder Street	
2	East	East	Riddell Road	
3	North	North	Alder Street	
3	West	West	Riddell Road	
3	South	South	Alder Street	
3	East	East	Riddell Road	

Capacity Options

Intersection	Leg	Minimum Capacity (PCE/hr)	Maximum Capacity (PCE/hr)	Assume Flat Start Profile	Initial Queue (PCE)
1	North	0.00	99999.00		0.00
1	West	0.00	99999.00		0.00
1	South	0.00	99999.00		0.00
1	East	0.00	99999.00		0.00
2	North	0.00	99999.00		0.00

2	West	0.00	99999.00	0.00
2	South	0.00	99999.00	0.00
2	East	0.00	99999.00	0.00
3	North	0.00	99999.00	0.00
3	West	0.00	99999.00	0.00
3	South	0.00	99999.00	0.00
3	East	0.00	99999.00	0.00

Roundabout Geometry

Intersection	Leg	V - Approach road half- width (m)	E - Entry width (m)	l' - Effective flare length (m)	R - Entry radius (m)	D - Inscribed circle diameter (m)	PHI - Conflict (entry) angle (deg)	Exit Only
1	North	3.50	4.50	30.00	20.00	40.00	25.00	
1	West	3.50	4.50	30.00	20.00	40.00	25.00	
1	South	3.50	4.50	30.00	20.00	40.00	25.00	
1	East	3.50	4.50	30.00	20.00	40.00	25.00	
2	North	3.50	4.50	30.00	20.00	47.50	25.00	
2	West	3.50	8.00	30.00	20.00	47.50	25.00	
2	South	3.50	4.50	30.00	20.00	47.50	25.00	
2	East	3.50	8.00	30.00	20.00	47.50	25.00	
3	North	3.50	8.00	30.00	20.00	55.00	25.00	
3	West	3.50	8.00	30.00	20.00	55.00	25.00	
3	South	3.50	8.00	30.00	20.00	55.00	25.00	
3	East	3.50	8.00	30.00	20.00	55.00	25.00	

Slope / Intercept / Capacity

Leg Intercept Adjustments

Intersection	Leg	Туре	Reason	Direct Intercept Adjustment (PCE/hr)	Percentage Intercept Adjustment (%)
1	North	Percentage	Region of Waterloo Standard		90.00
1	West	Percentage	Region of Waterloo Standard		90.00
1	South	Percentage	Region of Waterloo Standard		90.00
1	East	Percentage	Region of Waterloo Standard		90.00
2	North	Percentage	Region of Waterloo Standard		90.00
2	West	Percentage	Region of Waterloo Standard		90.00
2	South	Percentage	Region of Waterloo Standard		90.00
2	East	Percentage	Region of Waterloo Standard		90.00
3	North	Percentage	Region of Waterloo Standard		90.00
3	West	Percentage	Region of Waterloo Standard		90.00
3	South	Percentage	Region of Waterloo Standard		90.00
3	East	Percentage	Region of Waterloo Standard		90.00

Roundabout Slope and Intercept used in model

Intersection	Leg	Enter slope and intercept directly	Entered slope	Entered intercept (PCE/hr)	Final Slope	Final Intercept (PCE/hr)
1	North		(calculated)	(calculated)	0.579	1221.701
1	West		(calculated)	(calculated)	0.579	1221.701
1	South		(calculated)	(calculated)	0.579	1221.701
1	East		(calculated)	(calculated)	0.579	1221.701
2	North		(calculated)	(calculated)	0.558	1221.701
2	West		(calculated)	(calculated)	0.685	1814.551
2	South		(calculated)	(calculated)	0.558	1221.701
2	East		(calculated)	(calculated)	0.685	1814.551
3	North		(calculated)	(calculated)	0.647	1814.551
3	West		(calculated)	(calculated)	0.647	1814.551
3	South		(calculated)	(calculated)	0.647	1814.551
3	East		(calculated)	(calculated)	0.647	1814.551

The slope and intercept shown above include any corrections and adjustments.

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCE Factor for a Truck (PCE)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
---------------------------	------------------------------------	------------------------------------	-------------------------------------	-----------------------	------------------------------------	-----------------------------------	---------------------------------------	--	--	---

Image: Constraint of the second se			\checkmark	✓	Truck Percentages	2.00				✓	~
---	--	--	--------------	---	----------------------	------	--	--	--	---	---

Entry Flows

General Flows Data

Intersection	Leg	Profile Type	Use Turning Counts	Average Demand Flow (PCE/hr)	Flow Scaling Factor (%)	
1	North ONE HOUR		✓	490.00	100.000	
1	West	ONE HOUR	✓	463.00	100.000	
1	South	ONE HOUR	~	254.00	100.000	
1	East	ONE HOUR	✓	1036.00	100.000	
2	North	ONE HOUR	✓	490.00	100.000	
2	West	ONE HOUR	✓	463.00	100.000	
2	South	ONE HOUR	~	254.00	100.000	
2	East	ONE HOUR	✓	1036.00	100.000	
3	North	ONE HOUR	~	490.00	100.000	
3	West	ONE HOUR	~	463.00	100.000	
3	South	ONE HOUR	1	254.00	100.000	
3	East	ONE HOUR	1	1036.00	100.000	

Turning Proportions

Turning Counts / Proportions (PCE/hr) - Intersection 1 (for whole period)

	То						
		North	West	South	East		
	North	0.000	72.000	228.000	190.000		
From	West	109.000	0.000	23.000	331.000		
	South	145.000	60.000	0.000	49.000		
	East	159.000	691.000	186.000	0.000		

Turning Proportions (PCE) - Intersection 1 (for whole period)

	То						
		North	West	South	East		
	North	0.00	0.15	0.47	0.39		
From	West	0.24	0.00	0.05	0.71		
	South	0.57	0.24	0.00	0.19		
	East	0.15	0.67	0.18	0.00		

Turning Counts / Proportions (PCE/hr) - Intersection 2 (for whole period)

	То							
		North	West	South	East			
	North	0.000	72.000	228.000	190.000			
From	West	109.000	0.000	23.000	331.000			
	South	145.000	60.000	0.000	49.000			
	East	159.000	691.000	186.000	0.000			

Turning Proportions (PCE) - Intersection 2 (for whole period)

	То						
		North	West	South	East		
	North	0.00	0.15	0.47	0.39		
From	West	0.24	0.00	0.05	0.71		
	South	0.57	0.24	0.00	0.19		
	East	0.15	0.67	0.18	0.00		

Turning Counts / Proportions (PCE/hr) - Intersection 3 (for whole period)

То						
	North	West	South	East		
North	0.000	72.000	228.000	190.000		

	West	109.000	0.000	23.000	331.000
From	South	145.000	60.000	0.000	49.000
	East	159.000	691.000	186.000	0.000

Turning Proportions (PCE) - Intersection 3 (for whole period)

	То							
		North	West	South	East			
	North	0.00	0.15	0.47	0.39			
From	West	0.24	0.00	0.05	0.71			
	South	0.57	0.24	0.00	0.19			
	East	0.15	0.67	0.18	0.00			

Vehicle Mix

Average PCE Per Vehicle - Intersection 1 (for whole period)

	То						
		North	West	South	East		
	North	1.000	1.110	1.030	1.080		
From	West	1.070	1.000	1.330	1.170		
	South	1.010	1.020	1.000	1.040		
	East	1.250	1.260	1.020	1.000		

Truck Percentages - Intersection 1 (for whole period)

	То							
		North	West	South	East			
	North	0.0	11.0	3.0	8.0			
From	West	7.0	0.0	33.0	17.0			
	South	1.0	2.0	0.0	4.0			
	East	25.0	26.0	2.0	0.0			

Average PCE Per Vehicle - Intersection 2 (for whole period)

	То						
		North	West	South	East		
	North	1.000	1.110	1.030	1.080		
From	West	1.070	1.000	1.330	1.170		
	South	1.010	1.020	1.000	1.040		
	East	1.250	1.260	1.020	1.000		

Truck Percentages - Intersection 2 (for whole period)

	То							
		North	West	South	East			
	North	0.0	11.0	3.0	8.0			
From	West	7.0	0.0	33.0	17.0			
	South	1.0	2.0	0.0	4.0			
	East	25.0	26.0	2.0	0.0			

Average PCE Per Vehicle - Intersection 3 (for whole period)

	То						
		North	West	South	East		
	North	1.000	1.110	1.030	1.080		
From	West	1.070	1.000	1.330	1.170		
	South	1.010	1.020	1.000	1.040		
	East	1.250	1.260	1.020	1.000		

Truck Percentages - Intersection 3 (for whole period)

			То		
		North	West	South	East
	North	0.0	11.0	3.0	8.0
From	West	7.0	0.0	33.0	17.0
	South	1.0	2.0	0.0	4.0
	East	25.0	26.0	2.0	0.0

Results

Results Summary for whole modelled period

Intersection	Leg	Max V/C Ratio	Max Delay (s)	Max Queue (PCE)	Max 95th percentile Queue (PCE)	Max LOS	Average Demand (PCE/hr)	Total Intersection Arrivals (PCE)	Total Queueing Delay (PCE- min)	Average Queueing Delay (s)	Rate Of Queueing Delay (PCE- min/min)	Inclusive Total Queueing Delay (PCE- min)	Inclusive Average Queueing Delay (s)
1	North	0.79	25.70	3.67	11.66	D	449.63	674.45	182.03	16.19	2.02	182.08	16.20
1	West	0.60	12.16	1.69	2.30	В	424.86	637.29	98.32	9.26	1.09	98.33	9.26
1	South	0.34	6.77	0.52	1.02	A	233.07	349.61	33.58	5.76	0.37	33.58	5.76
1	East	1.12	208.57	71.44	132.83	F	950.65	1425.98	2445.42	102.89	27.17	2445.75	102.91
2	North	0.83	34.07	4.81	16.96	D	449.63	674.45	197.29	17.55	2.19	197.31	17.55
2	West	0.37	4.87	0.69	1.15	A	424.86	637.29	44.70	4.21	0.50	44.70	4.21
2	South	0.33	6.60	0.51	1.02	A	233.07	349.61	32.92	5.65	0.37	32.92	5.65
2	East	0.72	9.92	3.09	4.83	A	950.65	1425.98	169.99	7.15	1.89	170.01	7.15
3	North	0.47	6.28	0.93	1.06	A	449.63	674.45	56.15	5.00	0.62	56.16	5.00
3	West	0.37	4.74	0.67	1.15	A	424.86	637.29	43.75	4.12	0.49	43.75	4.12
3	South	0.20	3.37	0.26	~1	A	233.07	349.61	17.92	3.07	0.20	17.92	3.07
3	East	0.72	9.63	3.00	4.83	A	950.65	1425.98	166.55	7.01	1.85	166.57	7.01

Main Results for each time segment

Main results: (16:00-16:15)

Intersection	Leg	Total Demand (PCE/hr)	Intersection Arrivals (PCE)	Entry Flow (PCE/hr)	Exit Flow (PCE/hr)	Circulating Flow (PCE/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCE/hr)	Saturation Capacity (PCE/hr)	V/C Ratio	Start Queue (PCE)	End Queue (PCE)	Delay (s)	LOS
1	North	368.90	92.22	365.48	307.94	695.29	0.00	819.30	733.01	0.450	0.00	0.85	8.350	Α
1	West	348.57	87.14	345.98	611.06	449.71	0.00	961.43	774.46	0.363	0.00	0.65	6.708	Α
1	South	191.22	47.81	190.20	325.18	470.51	0.00	949.39	631.24	0.201	0.00	0.26	4.822	Α
1	East	779.96	194.99	768.27	425.75	234.96	0.00	1085.71	821.32	0.718	0.00	2.92	13.249	В
2	North	368.90	92.22	365.56	309.37	701.57	0.00	830.24	518.25	0.444	0.00	0.83	8.158	Α
2	West	348.57	87.14	347.19	616.02	451.11	0.00	1505.65	1342.37	0.232	0.00	0.35	3.573	Α
2	South	191.22	47.81	190.22	326.61	471.69	0.00	958.51	397.78	0.200	0.00	0.25	4.764	Α
2	East	779.96	194.99	775.69	426.65	235.26	0.00	1653.46	1378.31	0.472	0.00	1.07	4.929	Α
3	North	368.90	92.22	367.33	309.62	701.71	0.00	1360.84	1030.03	0.271	0.00	0.39	3.830	Α
3	West	348.57	87.14	347.21	616.41	452.63	0.00	1521.89	1108.38	0.229	0.00	0.34	3.526	Α
3	South	191.22	47.81	190.64	327.44	472.40	0.00	1509.11	875.25	0.127	0.00	0.15	2.778	Α
3	East	779.96	194.99	775.73	427.43	235.60	0.00	1662.22	1189.09	0.469	0.00	1.06	4.880	Α

Main results: (16:15-16:30)

Intersection	Leg	Total Demand (PCE/hr)	Intersection Arrivals (PCE)	Entry Flow (PCE/hr)	Exit Flow (PCE/hr)	Circulating Flow (PCE/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCE/hr)	Saturation Capacity (PCE/hr)	V/C Ratio	Start Queue (PCE)	End Queue (PCE)	Delay (s)	LOS
1	North	440.50	110.12	437.92	368.22	828.13	0.00	742.41	733.01	0.593	0.85	1.50	12.429	В
1	West	416.23	104.06	415.00	728.27	537.79	0.00	910.45	774.46	0.457	0.65	0.95	8.346	Α
1	South	228.34	57.09	227.98	388.60	564.19	0.00	895.17	631.24	0.255	0.26	0.35	5.491	Α
1	East	931.34	232.84	914.66	510.47	281.70	0.00	1058.67	821.32	0.880	2.92	7.09	27.388	D
2	North	440.50	110.12	438.03	370.64	840.44	0.00	752.76	518.25	0.585	0.83	1.45	12.031	В
2	West	416.23	104.06	415.75	737.98	540.49	0.00	1444.44	1342.37	0.288	0.35	0.46	4.028	Α
2	South	228.34	57.09	227.99	391.30	564.95	0.00	906.47	397.78	0.252	0.25	0.34	5.399	Α
2	East	931.34	232.84	929.20	511.06	281.88	0.00	1621.53	1378.31	0.574	1.07	1.60	6.258	Α
3	North	440.50	110.12	439.84	370.75	840.53	0.00	1271.08	1030.03	0.347	0.39	0.56	4.587	Α
3	West	416.23	104.06	415.77	738.33	542.04	0.00	1464.08	1108.38	0.284	0.34	0.45	3.952	Α
3	South	228.34	57.09	228.17	392.15	565.67	0.00	1448.80	875.25	0.158	0.15	0.19	3.002	Α
3	East	931.34	232.84	929.25	511.80	282.03	0.00	1632.19	1189.09	0.571	1.06	1.58	6.165	Α

Main results: (16:30-16:45)

Intersection	Leg	Total Demand (PCE/hr)	Intersection Arrivals (PCE)	Entry Flow (PCE/hr)	Exit Flow (PCE/hr)	Circulating Flow (PCE/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCE/hr)	Saturation Capacity (PCE/hr)	V/C Ratio	Start Queue (PCE)	End Queue (PCE)	Delay (s)	LOS
					1			1						1 1

North	539.50	134.88	531.91	432.95	917.20	0.00	690.86	733.01	0.781	1.50	3.40	22.970	С
West	509.77	127.44	506.99	814.81	634.30	0.00	854.59	774.46	0.597	0.95	1.65	11.829	В
South	279.66	69.91	278.97	453.23	688.05	0.00	823.48	631.24	0.340	0.35	0.52	6.722	Α
East	1140.66	285.16	1005.64	622.51	344.51	0.00	1022.31	821.32	1.116	7.09	40.85	100.396	F
North	539.50	134.88	527.76	453.26	1026.66	0.00	648.85	518.25	0.831	1.45	4.39	29.090	D
West	509.77	127.44	508.91	900.45	653.97	0.00	1366.74	1342.37	0.373	0.46	0.68	4.827	Α
South	279.66	69.91	279.00	474.61	688.27	0.00	837.67	397.78	0.334	0.34	0.50	6.551	Α
East	1140.66	285.16	1134.94	622.28	344.99	0.00	1578.32	1378.31	0.723	1.60	3.03	9.679	Α
North	539.50	134.88	538.04	453.52	1026.95	0.00	1150.55	1030.03	0.469	0.56	0.92	6.216	Α
West	509.77	127.44	508.93	902.20	662.78	0.00	1386.01	1108.38	0.368	0.45	0.66	4.723	Α
South	279.66	69.91	279.38	479.44	692.28	0.00	1366.94	875.25	0.205	0.19	0.26	3.369	Α
East	1140.66	285.16	1135.18	626.36	345.29	0.00	1591.29	1189.09	0.717	1.58	2.95	9.419	A
	North West South East North East North West South East	North 539.50 West 509.77 South 279.66 East 1140.66 North 539.50 West 509.77 South 279.66 East 1140.66 North 279.66 East 1140.66 North 539.50 West 509.77 South 279.66 East 509.77 South 279.66 East 1140.66	North 539.50 134.88 West 509.77 127.44 South 279.66 69.91 East 1140.66 285.16 North 539.50 134.88 West 509.77 127.44 South 279.66 69.91 East 1140.66 285.16 North 539.50 134.88 West 509.77 127.44 South 279.66 69.91 East 1140.66 285.16 North 539.50 134.88 West 509.77 127.44 South 279.66 69.91 East 1140.66 285.16	North 539.50 134.88 531.91 West 509.77 127.44 506.99 South 279.66 69.91 278.97 East 1140.66 285.16 1005.64 North 539.50 134.88 527.76 West 509.77 127.44 508.91 South 279.66 69.91 279.00 East 1140.66 285.16 1134.94 North 539.50 134.88 538.04 West 509.77 127.44 508.91 South 279.66 69.91 279.00 East 1140.66 285.16 1134.94 North 539.50 134.88 538.04 West 509.77 127.44 508.93 South 279.66 69.91 279.38 East 1140.66 285.16 1135.18	North 539.50 134.88 531.91 432.95 West 509.77 127.44 506.99 814.81 South 279.66 69.91 278.97 453.23 East 1140.66 285.16 1005.64 622.51 North 539.50 134.88 527.76 453.26 West 509.77 127.44 508.91 900.45 South 279.66 69.91 279.00 474.61 East 1140.66 285.16 1134.94 622.28 North 539.50 134.88 538.04 453.52 West 509.77 127.44 508.91 900.45 South 279.66 69.91 279.00 474.61 East 1140.66 285.16 1134.94 622.28 North 539.50 134.88 538.04 453.52 West 509.77 127.44 508.93 902.20 South 279.66 69.91 279.38 4	North 539.50 134.88 531.91 432.95 917.20 West 509.77 127.44 506.99 814.81 634.30 South 279.66 69.91 278.97 453.23 688.05 East 1140.66 285.16 1005.64 622.51 344.51 North 539.50 134.88 527.76 453.26 1026.66 West 509.77 127.44 508.91 900.45 653.97 South 279.66 69.91 279.00 474.61 688.27 East 1140.66 285.16 1134.94 622.28 344.99 North 539.50 134.88 538.04 453.52 1026.95 West 509.77 127.44 508.93 902.20 662.78 South 259.50 134.88 538.04 453.52 1026.95 West 509.77 127.44 508.93 902.20 662.78 South 279.66 69.91 279.38 <th>North 539.50 134.88 531.91 432.95 917.20 0.00 West 509.77 127.44 506.99 814.81 634.30 0.00 South 279.66 69.91 278.97 453.23 688.05 0.00 East 1140.66 285.16 1005.64 622.51 344.51 0.00 North 539.50 134.88 527.76 453.26 1026.66 0.00 West 509.77 127.44 508.91 900.45 653.97 0.00 South 279.66 69.91 279.00 474.61 688.27 0.00 South 279.66 69.91 279.00 474.61 688.27 0.00 South 279.66 69.91 279.00 473.52 1026.95 0.00 North 539.50 134.88 538.04 453.52 1026.95 0.00 North 539.50 134.88 538.04 453.52 1026.95 0.00</th> <th>North 539.50 134.88 531.91 432.95 917.20 0.00 690.86 West 509.77 127.44 506.99 814.81 634.30 0.00 854.59 South 279.66 69.91 278.97 453.23 688.05 0.00 823.48 East 1140.66 285.16 1005.64 622.51 344.51 0.00 1022.31 North 539.50 134.88 527.76 453.26 1026.66 0.00 648.85 West 509.77 127.44 508.91 900.45 653.97 0.00 1366.74 South 279.66 69.91 279.00 474.61 688.27 0.00 837.67 East 1140.66 285.16 1134.94 622.28 344.99 0.00 1578.32 North 539.50 134.88 538.04 453.52 1026.95 0.00 1150.55 West 509.77 127.44 508.93 902.20 662.78 0.00<</th> <th>North 539.50 134.88 531.91 432.95 917.20 0.00 690.86 733.01 West 509.77 127.44 506.99 814.81 634.30 0.00 854.59 774.46 South 279.66 69.91 278.97 453.23 6680.55 0.00 823.48 631.24 East 1140.66 285.16 1005.64 622.51 344.51 0.00 1022.31 821.32 North 539.50 134.88 527.76 453.26 1026.66 0.00 648.85 518.25 West 509.77 127.44 508.91 900.45 653.97 0.00 1366.74 1342.37 South 279.66 69.91 279.00 474.61 688.27 0.00 837.67 397.78 East 1140.66 285.16 1134.94 622.28 344.99 0.00 1578.32 1378.31 North 539.50 134.88 538.04 453.52 1026.95 0.00</th> <th>North 539.50 134.88 531.91 432.95 917.20 0.00 690.86 733.01 0.781 West 509.77 127.44 506.99 814.81 634.30 0.00 854.59 774.46 0.597 South 279.66 69.91 278.97 453.23 688.05 0.00 823.48 631.24 0.340 East 1140.66 285.16 1005.64 622.51 344.51 0.00 1022.31 821.32 1.116 North 539.50 134.88 527.76 453.26 1026.66 0.00 648.85 518.25 0.831 West 509.77 127.44 508.91 900.45 653.97 0.00 1366.74 1342.37 0.373 South 279.66 69.91 279.00 474.61 688.27 0.00 837.67 397.78 0.334 East 1140.66 285.16 1134.94 622.28 344.99 0.00 1578.32 1378.31 0.723</th> <th>North 539.50 134.88 531.91 432.95 917.20 0.00 690.86 733.01 0.781 1.50 West 509.77 127.44 506.99 814.81 634.30 0.00 854.59 774.46 0.597 0.95 South 279.66 69.91 278.97 453.23 6680.55 0.00 823.48 631.24 0.340 0.350 East 1140.66 285.16 1005.64 622.51 344.51 0.00 1022.31 821.32 1.116 7.09 North 539.50 134.88 527.76 453.26 1026.66 0.00 648.85 518.25 0.831 1.45 West 509.77 127.44 508.91 900.45 653.97 0.00 1366.74 1342.37 0.373 0.46 South 279.66 69.91 279.00 474.61 688.27 0.00 837.67 397.78 0.334 0.34 East 1140.66 285.16 1134.94<th>North 539.50 134.88 531.91 432.95 917.20 0.00 690.86 733.01 0.781 1.50 3.40 West 509.77 127.44 506.99 814.81 634.30 0.00 854.59 774.46 0.597 0.95 1.65 South 279.66 69.91 278.97 453.23 688.05 0.00 823.48 631.24 0.340 0.350 0.52 East 1140.66 285.16 1005.64 622.51 344.51 0.00 1022.31 821.32 1.116 7.09 40.85 North 539.50 134.88 527.76 453.26 1026.66 0.00 648.85 518.25 0.831 1.45 4.39 West 509.77 127.44 508.91 90.45 653.97 0.00 1366.74 1342.37 0.33 0.46 0.68 South 279.66 69.91 279.00 474.61 688.27 0.00 1378.31 0.723 1.60</th><th>North539.50134.88531.91432.95917.200.00690.86733.010.7811.503.4022.970West509.77127.44506.99814.81634.300.00854.59774.460.5970.951.6511.829South279.6669.91278.97453.23688.050.00823.48631.240.3400.350.526.722East1140.66285.161005.64622.51344.510.001022.31821.321.1167.0940.85100.368North539.50134.88527.76453.261026.660.00648.85518.250.8311.454.3929.090West509.77127.44508.91900.45653.970.001366.741342.370.370.460.684.827South279.6669.91279.00474.61688.270.00837.67397.780.330.340.506.551East1140.66285.161134.94622.28344.990.001578.321378.310.7231.603.039.679North539.50134.88538.04453.521026.950.001150.551030.030.4690.560.926.216West509.77127.44508.93902.20662.780.001386.011108.380.3680.4550.926.216South259.50134.88538.04453.52<!--</th--></th></th>	North 539.50 134.88 531.91 432.95 917.20 0.00 West 509.77 127.44 506.99 814.81 634.30 0.00 South 279.66 69.91 278.97 453.23 688.05 0.00 East 1140.66 285.16 1005.64 622.51 344.51 0.00 North 539.50 134.88 527.76 453.26 1026.66 0.00 West 509.77 127.44 508.91 900.45 653.97 0.00 South 279.66 69.91 279.00 474.61 688.27 0.00 South 279.66 69.91 279.00 474.61 688.27 0.00 South 279.66 69.91 279.00 473.52 1026.95 0.00 North 539.50 134.88 538.04 453.52 1026.95 0.00 North 539.50 134.88 538.04 453.52 1026.95 0.00	North 539.50 134.88 531.91 432.95 917.20 0.00 690.86 West 509.77 127.44 506.99 814.81 634.30 0.00 854.59 South 279.66 69.91 278.97 453.23 688.05 0.00 823.48 East 1140.66 285.16 1005.64 622.51 344.51 0.00 1022.31 North 539.50 134.88 527.76 453.26 1026.66 0.00 648.85 West 509.77 127.44 508.91 900.45 653.97 0.00 1366.74 South 279.66 69.91 279.00 474.61 688.27 0.00 837.67 East 1140.66 285.16 1134.94 622.28 344.99 0.00 1578.32 North 539.50 134.88 538.04 453.52 1026.95 0.00 1150.55 West 509.77 127.44 508.93 902.20 662.78 0.00<	North 539.50 134.88 531.91 432.95 917.20 0.00 690.86 733.01 West 509.77 127.44 506.99 814.81 634.30 0.00 854.59 774.46 South 279.66 69.91 278.97 453.23 6680.55 0.00 823.48 631.24 East 1140.66 285.16 1005.64 622.51 344.51 0.00 1022.31 821.32 North 539.50 134.88 527.76 453.26 1026.66 0.00 648.85 518.25 West 509.77 127.44 508.91 900.45 653.97 0.00 1366.74 1342.37 South 279.66 69.91 279.00 474.61 688.27 0.00 837.67 397.78 East 1140.66 285.16 1134.94 622.28 344.99 0.00 1578.32 1378.31 North 539.50 134.88 538.04 453.52 1026.95 0.00	North 539.50 134.88 531.91 432.95 917.20 0.00 690.86 733.01 0.781 West 509.77 127.44 506.99 814.81 634.30 0.00 854.59 774.46 0.597 South 279.66 69.91 278.97 453.23 688.05 0.00 823.48 631.24 0.340 East 1140.66 285.16 1005.64 622.51 344.51 0.00 1022.31 821.32 1.116 North 539.50 134.88 527.76 453.26 1026.66 0.00 648.85 518.25 0.831 West 509.77 127.44 508.91 900.45 653.97 0.00 1366.74 1342.37 0.373 South 279.66 69.91 279.00 474.61 688.27 0.00 837.67 397.78 0.334 East 1140.66 285.16 1134.94 622.28 344.99 0.00 1578.32 1378.31 0.723	North 539.50 134.88 531.91 432.95 917.20 0.00 690.86 733.01 0.781 1.50 West 509.77 127.44 506.99 814.81 634.30 0.00 854.59 774.46 0.597 0.95 South 279.66 69.91 278.97 453.23 6680.55 0.00 823.48 631.24 0.340 0.350 East 1140.66 285.16 1005.64 622.51 344.51 0.00 1022.31 821.32 1.116 7.09 North 539.50 134.88 527.76 453.26 1026.66 0.00 648.85 518.25 0.831 1.45 West 509.77 127.44 508.91 900.45 653.97 0.00 1366.74 1342.37 0.373 0.46 South 279.66 69.91 279.00 474.61 688.27 0.00 837.67 397.78 0.334 0.34 East 1140.66 285.16 1134.94 <th>North 539.50 134.88 531.91 432.95 917.20 0.00 690.86 733.01 0.781 1.50 3.40 West 509.77 127.44 506.99 814.81 634.30 0.00 854.59 774.46 0.597 0.95 1.65 South 279.66 69.91 278.97 453.23 688.05 0.00 823.48 631.24 0.340 0.350 0.52 East 1140.66 285.16 1005.64 622.51 344.51 0.00 1022.31 821.32 1.116 7.09 40.85 North 539.50 134.88 527.76 453.26 1026.66 0.00 648.85 518.25 0.831 1.45 4.39 West 509.77 127.44 508.91 90.45 653.97 0.00 1366.74 1342.37 0.33 0.46 0.68 South 279.66 69.91 279.00 474.61 688.27 0.00 1378.31 0.723 1.60</th> <th>North539.50134.88531.91432.95917.200.00690.86733.010.7811.503.4022.970West509.77127.44506.99814.81634.300.00854.59774.460.5970.951.6511.829South279.6669.91278.97453.23688.050.00823.48631.240.3400.350.526.722East1140.66285.161005.64622.51344.510.001022.31821.321.1167.0940.85100.368North539.50134.88527.76453.261026.660.00648.85518.250.8311.454.3929.090West509.77127.44508.91900.45653.970.001366.741342.370.370.460.684.827South279.6669.91279.00474.61688.270.00837.67397.780.330.340.506.551East1140.66285.161134.94622.28344.990.001578.321378.310.7231.603.039.679North539.50134.88538.04453.521026.950.001150.551030.030.4690.560.926.216West509.77127.44508.93902.20662.780.001386.011108.380.3680.4550.926.216South259.50134.88538.04453.52<!--</th--></th>	North 539.50 134.88 531.91 432.95 917.20 0.00 690.86 733.01 0.781 1.50 3.40 West 509.77 127.44 506.99 814.81 634.30 0.00 854.59 774.46 0.597 0.95 1.65 South 279.66 69.91 278.97 453.23 688.05 0.00 823.48 631.24 0.340 0.350 0.52 East 1140.66 285.16 1005.64 622.51 344.51 0.00 1022.31 821.32 1.116 7.09 40.85 North 539.50 134.88 527.76 453.26 1026.66 0.00 648.85 518.25 0.831 1.45 4.39 West 509.77 127.44 508.91 90.45 653.97 0.00 1366.74 1342.37 0.33 0.46 0.68 South 279.66 69.91 279.00 474.61 688.27 0.00 1378.31 0.723 1.60	North539.50134.88531.91432.95917.200.00690.86733.010.7811.503.4022.970West509.77127.44506.99814.81634.300.00854.59774.460.5970.951.6511.829South279.6669.91278.97453.23688.050.00823.48631.240.3400.350.526.722East1140.66285.161005.64622.51344.510.001022.31821.321.1167.0940.85100.368North539.50134.88527.76453.261026.660.00648.85518.250.8311.454.3929.090West509.77127.44508.91900.45653.970.001366.741342.370.370.460.684.827South279.6669.91279.00474.61688.270.00837.67397.780.330.340.506.551East1140.66285.161134.94622.28344.990.001578.321378.310.7231.603.039.679North539.50134.88538.04453.521026.950.001150.551030.030.4690.560.926.216West509.77127.44508.93902.20662.780.001386.011108.380.3680.4550.926.216South259.50134.88538.04453.52 </th

Main results: (16:45-17:00)

Intersection	Leg	Total Demand (PCE/hr)	Intersection Arrivals (PCE)	Entry Flow (PCE/hr)	Exit Flow (PCE/hr)	Circulating Flow (PCE/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCE/hr)	Saturation Capacity (PCE/hr)	V/C Ratio	Start Queue (PCE)	End Queue (PCE)	Delay (s)	LOS
1	North	539.50	134.88	538.40	435.89	928.05	0.00	684.58	733.01	0.788	3.40	3.67	25.698	D
1	West	509.77	127.44	509.60	824.34	642.11	0.00	850.08	774.46	0.600	1.65	1.69	12.162	В
1	South	279.66	69.91	279.64	458.65	693.06	0.00	820.59	631.24	0.341	0.52	0.52	6.774	Α
1	East	1140.66	285.16	1018.27	627.03	345.66	0.00	1021.64	821.32	1.116	40.85	71.44	208.569	F
2	North	539.50	134.88	537.81	454.67	1031.46	0.00	646.18	518.25	0.835	4.39	4.81	34.070	D
2	West	509.77	127.44	509.74	905.73	663.53	0.00	1360.19	1342.37	0.375	0.68	0.69	4.874	Α
2	South	279.66	69.91	279.64	480.32	692.96	0.00	835.05	397.78	0.335	0.50	0.51	6.597	Α
2	East	1140.66	285.16	1140.43	626.90	345.70	0.00	1577.83	1378.31	0.723	3.03	3.09	9.923	Α
3	North	539.50	134.88	539.46	454.68	1031.48	0.00	1147.62	1030.03	0.470	0.92	0.93	6.275	Α
3	West	509.77	127.44	509.76	905.99	664.95	0.00	1384.61	1108.38	0.368	0.66	0.67	4.738	Α
3	South	279.66	69.91	279.66	481.09	693.62	0.00	1366.07	875.25	0.205	0.26	0.26	3.372	A
3	East	1140.66	285.16	1140.45	627.56	345.71	0.00	1591.02	1189.09	0.717	2.95	3.00	9.634	Α

Main results: (17:00-17:15)

Intersection	Leg	Total Demand (PCE/hr)	Intersection Arrivals (PCE)	Entry Flow (PCE/hr)	Exit Flow (PCE/hr)	Circulating Flow (PCE/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCE/hr)	Saturation Capacity (PCE/hr)	V/C Ratio	Start Queue (PCE)	End Queue (PCE)	Delay (s)	LOS
1	North	440.50	110.12	447.05	388.98	934.54	0.00	680.82	733.01	0.647	3.67	2.03	16.755	С
1	West	416.23	104.06	418.90	813.50	568.09	0.00	892.91	774.46	0.466	1.69	1.02	8.794	Α
1	South	228.34	57.09	229.02	415.56	571.44	0.00	890.97	631.24	0.256	0.52	0.35	5.543	Α
1	East	931.34	232.84	1040.07	517.00	283.46	0.00	1057.65	821.32	0.881	71.44	44.26	202.314	F
2	North	440.50	110.12	453.48	372.73	847.35	0.00	748.91	518.25	0.588	4.81	1.56	13.450	В
2	West	416.23	104.06	417.08	745.74	555.09	0.00	1434.45	1342.37	0.290	0.69	0.47	4.079	Α
2	South	228.34	57.09	228.99	399.97	572.20	0.00	902.43	397.78	0.253	0.51	0.35	5.448	Α
2	East	931.34	232.84	937.07	518.19	283.00	0.00	1620.76	1378.31	0.575	3.09	1.66	6.412	Α
3	North	440.50	110.12	441.96	372.48	847.05	0.00	1266.86	1030.03	0.348	0.93	0.57	4.634	Α
3	West	416.23	104.06	417.06	743.80	545.21	0.00	1462.03	1108.38	0.285	0.67	0.46	3.971	Α
3	South	228.34	57.09	228.62	394.56	567.71	0.00	1447.48	875.25	0.158	0.26	0.19	3.006	Α
3	East	931.34	232.84	936.83	513.63	282.70	0.00	1631.76	1189.09	0.571	3.00	1.63	6.305	Α

Main results: (17:15-17:30)

Intersection	Leg	Total Demand (PCE/hr)	Intersection Arrivals (PCE)	Entry Flow (PCE/hr)	Exit Flow (PCE/hr)	Circulating Flow (PCE/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCE/hr)	Saturation Capacity (PCE/hr)	V/C Ratio	Start Queue (PCE)	End Queue (PCE)	Delay (s)	LOS
1	North	368.90	92.22	372.64	336.54	843.83	0.00	733.33	733.01	0.503	2.03	1.10	10.690	В
1	West	348.57	87.14	349.91	729.22	487.25	0.00	939.70	774.46	0.371	1.02	0.69	7.044	Α
1	South	191.22	47.81	191.60	360.14	477.02	0.00	945.62	631.24	0.202	0.35	0.26	4.862	A
1	East	779.96	194.99	943.35	431.61	237.02	0.00	1084.53	821.32	0.719	44.26	3.42	56.492	F
2	North	368.90	92.22	371.68	311.60	707.43	0.00	826.98	518.25	0.446	1.56	0.87	8.435	A
2	West	348.57	87.14	349.07	621.61	457.51	0.00	1501.27	1342.37	0.232	0.47	0.35	3.598	A
2	South	191.22	47.81	191.59	330.72	475.85	0.00	956.19	397.78	0.200	0.35	0.26	4.796	A
2	East	779.96	194.99	782.22	430.63	236.81	0.00	1652.39	1378.31	0.472	1.66	1.09	5.008	A
3	North	368.90	92.22	369.58	311.47	707.33	0.00	1357.20	1030.03	0.272	0.57	0.40	3.868	A
3	West	348.57	87.14	349.04	621.21	455.70	0.00	1519.90	1108.38	0.229	0.46	0.34	3.541	A
3	South	191.22	47.81	191.40	329.74	475.01	0.00	1507.42	875.25	0.127	0.19	0.15	2.786	A
3	East	779.96	194.99	782.16	429.76	236.64	0.00	1661.54	1189.09	0.469	1.63	1.08	4.957	Α

Queueing Delay Results for each time segment

Queueing Delay results: (16:00-16:15)

Intersection	Leg	Queueing Total Delay (PCE-min)	Queueing Rate Of Delay (PCE- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
1	North	12.16	0.81	8.350	А	A
1	West	9.33	0.62	6.708	А	A
1	South	3.72	0.25	4.822	А	A
1	East	39.43	2.63	13.249	В	В
2	North	11.90	0.79	8.158	А	A
2	West	5.06	0.34	3.573	А	A
2	South	3.68	0.25	4.764	А	A
2	East	15.44	1.03	4.929	А	A
3	North	5.74	0.38	3.830	A	A
3	West	5.00	0.33	3.526	A	A
3	South	2.17	0.14	2.778	A	A
3	East	15.29	1.02	4.880	А	A

Queueing Delay results: (16:15-16:30)

Intersection	Leg	Queueing Total Delay (PCE-min)	Queueing Rate Of Delay (PCE- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
1	North	21.13	1.41	12.429	В	В
1	West	13.80	0.92	8.346	A	A
1	South	5.08	0.34	5.491	А	A
1	East	88.87	5.92	27.388	D	С
2	North	20.51	1.37	12.031	В	В
2	West	6.83	0.46	4.028	А	A
2	South	5.00	0.33	5.399	А	A
2	East	23.21	1.55	6.258	А	A
3	North	8.19	0.55	4.587	А	A
3	West	6.70	0.45	3.952	А	A
3	South	2.81	0.19	3.002	A	A
3	East	22.88	1.53	6.165	A	A

Queueing Delay results: (16:30-16:45)

Intersection	Leg	Queueing Total Delay (PCE-min)	Queueing Rate Of Delay (PCE- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
1	North	44.75	2.98	22.970	С	С
1	West	23.33	1.56	11.829	В	В
1	South	7.55	0.50	6.722	A	A
1	East	371.40	24.76	100.396	F	F
2	North	55.12	3.67	29.090	D	С
2	West	9.95	0.66	4.827	A	A
2	South	7.37	0.49	6.551	A	A
2	East	42.48	2.83	9.679	A	A
3	North	13.41	0.89	6.216	A	A
3	West	9.74	0.65	4.723	A	A
3	South	3.85	0.26	3.369	A	A
3	East	41.42	2.76	9.419	A	A

Queueing Delay results: (16:45-17:00)

Intersection	Leg	Queueing Total Delay (PCE-min)	Queueing Rate Of Delay (PCE- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
1	North	53.48	3.57	25.698	D	С
1	West	25.15	1.68	12.162	В	В
1	South	7.82	0.52	6.774	A	A
1	East	843.19	56.21	208.569	F	F
2	North	69.58	4.64	34.070	D	С
2	West	10.26	0.68	4.874	A	A
2	South	7.62	0.51	6.597	A	A
2	East	46.01	3.07	9.923	A	A
3	North	13.95	0.93	6.275	A	A
3	West	10.00	0.67	4.738	A	A
3	South	3.92	0.26	3.372	A	A
3	East	44.73	2.98	9.634	A	A

Queueing Delay results: (17:00-17:15)

Intersection	Leg	Queueing Total Delay (PCE-min)	Queueing Rate Of Delay (PCE- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service

1			L	I.	I	I
1	North	33.09	2.21	16.755	C	В
1	West	16.05	1.07	8.794	A	A
1	South	5.44	0.36	5.543	A	A
1	East	867.81	57.85	202.314	F	F
2	North	26.56	1.77	13.450	В	В
2	West	7.25	0.48	4.079	A	A
2	South	5.34	0.36	5.448	A	A
2	East	26.00	1.73	6.412	A	A
3	North	8.77	0.58	4.634	A	A
3	West	7.06	0.47	3.971	A	A
3	South	2.91	0.19	3.006	A	A
3	East	25.56	1.70	6.305	A	A

Queueing Delay results: (17:15-17:30)

Intersection	Leg	Queueing Total Delay (PCE-min)	Queueing Rate Of Delay (PCE- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
1	North	17.41	1.16	10.690	В	В
1	West	10.65	0.71	7.044	A	A
1	South	3.98	0.27	4.862	A	А
1	East	234.73	15.65	56.492	F	E
2	North 13.62		0.91	8.435	A	A
2	West	5.34	0.36	3.598	А	A
2	South	3.92	0.26	4.796	А	А
2	East	16.85	1.12	5.008	A	A
3	North	6.09	0.41	3.868	А	A
3	West	5.25	0.35	3.541	A	А
3	South 2.25		0.15	2.786	A	A
3	East 16.67		1.11	4.957	A	A

Queue Variation Results for each time segment

Queue Variation results: (16:00-16:15)

Intersection	Leg	Mean (PCE)	Q05 (PCE)	Q50 (PCE)	Q90 (PCE)	Q95 (PCE)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
1	North	0.85	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	West	0.65	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	South	0.26	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	East	2.92	0.00	1.21	4.83	6.04			N/A	N/A
2	North	0.83	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	West	0.35	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	South	0.25	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	East	1.07	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	North	0.39	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	West	0.34	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	South	0.15	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	East	1.06	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A

Queue Variation results: (16:15-16:30)

Intersection	Leg	Mean (PCE)	Q05 (PCE)	Q50 (PCE)	Q90 (PCE)	Q95 (PCE)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker	
			1	1	1	1			1 1		1

1	North	1.50	0.00	0.00	2.12	3.18		N/A	N/A
1	West	0.95	0.00	0.00	0.00	1.15		N/A	N/A
1	South	0.35	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	N/A	N/A
1	East	7.09	0.00	2.42	16.91	22.94		N/A	N/A
2	North	1.45	0.00	0.00	2.12	4.24		N/A	N/A
2	West	0.46	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	N/A	N/A
2	South	0.34	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	N/A	N/A
2	East	1.60	0.00	0.00	2.42	3.62		N/A	N/A
3	North	0.56	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	N/A	N/A
3	West	0.45	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	N/A	N/A
3	South	0.19	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	N/A	N/A
3	East	1.58	0.00	0.00	2.42	3.62		N/A	N/A

Queue Variation results: (16:30-16:45)

Intersection	Leg	Mean (PCE)	Q05 (PCE)	Q50 (PCE)	Q90 (PCE)	Q95 (PCE)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
1	North	3.40	0.00	0.00	5.30	11.66			N/A	N/A
1	West	1.65	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	South	0.52	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	East	40.85	10.87	36.23	68.83	82.11			N/A	N/A
2	North	4.39	0.00	0.00	8.48	15.90			N/A	N/A
2	West	0.68	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	South	0.50	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	East	3.03	0.00	0.00	0.00	4.83			N/A	N/A
3	North	0.92	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	West	0.66	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	South	0.26	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	East	2.95	0.00	0.00	0.00	4.83			N/A	N/A

Queue Variation results: (16:45-17:00)

Intersection	Leg	Mean (PCE)	Q05 (PCE)	Q50 (PCE)	Q90 (PCE)	Q95 (PCE)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
1	North	3.67	0.00	0.00	2.12	10.60			N/A	N/A
1	West	1.69	0.00	0.00	0.00	2.30			N/A	N/A
1	South	0.52	0.00	0.00	0.00	1.02			N/A	N/A
1	East	71.44	25.36	65.21	114.71	132.83			N/A	N/A
2	North	4.81	0.00	0.00	6.36	16.96			N/A	N/A
2	West	0.69	0.00	0.00	0.00	1.15			N/A	N/A
2	South	0.51	0.00	0.00	0.00	1.02			N/A	N/A
2	East	3.09	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	North	0.93	0.00	0.00	0.00	1.06			N/A	N/A
3	West	0.67	0.00	0.00	0.00	1.15			N/A	N/A
3	South	0.26	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	East	3.00	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A

Queue Variation results: (17:00-17:15)

Intersection	Leg	Mean (PCE)	Q05 (PCE)	Q50 (PCE)	Q90 (PCE)	Q95 (PCE)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
1	North	2.03	0.00	0.00	4.24	6.36			N/A	N/A
1	West	1.02	0.00	0.00	1.15	1.15			N/A	N/A
1	South	0.35	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	East	44.26	14.49	39.85	72.45	84.53			N/A	N/A
2	North	1.56	0.00	0.00	3.18	4.24			N/A	N/A
2	West	0.47	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	South	0.35	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	East	1.66	0.00	0.00	2.42	3.62			N/A	N/A
3	North	0.57	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	West	0.46	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	South	0.19	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	East	1.63	0.00	0.00	2.42	3.62			N/A	N/A

Queue Variation results: (17:15-17:30)

Intersection	Leg	Mean (PCE)	Q05 (PCE)	Q50 (PCE)	Q90 (PCE)	Q95 (PCE)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
1	North	1.10	0.00	0.00	1.06	3.18			N/A	N/A
1	West	0.69	0.00	0.00	0.00	1.15			N/A	N/A
1	South	0.26	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	East	3.42	0.00	0.00	1.21	9.66			N/A	N/A
2	North	0.87	0.00	0.00	0.00	2.12			N/A	N/A
2	West	0.35	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	South	0.26	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	East	1.09	0.00	0.00	1.21	2.42			N/A	N/A
3	North	0.40	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	West	0.34	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	South	0.15	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	East	1.08	0.00	0.00	1.21	2.42			N/A	N/A